DAX for Power Bl

Sample manual - first two chapters

09 WiseOw!

Training

Manual 1159 - 128 pages -

TABLE OF CONTENTS (1 of 4)

1 GETTING STARTED Page 5 LINKING TABLES Page
1.1 Introducing DAX 6 5.1 The RELATED Function 23
Where is DAX used? 6 5.2 Dealing with Blanks 24
How DAX is Used 1 - Calculated Columns 6 . .
How DAX is Used 2 — Measures 7 BLANK Arithmetic 25
How DAX is Used 3 — Queries 7 5.3 The RELATEDTABLE Function 26
1.2 The Construct-a-Creature Database 8
The Database Tables and Relationships 8 6 TRAPPING ERRORS Page
13 Column Storage 9 6.1 Using the DIVIDE Function 27
Row versus Column Storage 9 6.2 Using IFERROR 28
Data Compression 9 Generating your Own Errors using 28
Implications for Loading Data 10 ERROR
2 WRITING DAX Page 7 WORKING WITH DATA TYPES Page
2.1 Calculated Columns 11 71 DAX Data Types 29
Referring to Columns/Fields 11 7.2 Scalar Date Functions 30
Referring to Tables 12 .
Fully Qualified References 12 7.3 Scalar Text Functions 31
. Finding and Replacing Text 31
2.2 Writing DAX 13 Converting Text 31
Laying out your Formulae 13 Formatting Text 32
Using Multiple Lines 13 Getting the Length of and Extracting Text 32
Pressing the TAB Key 14 7.4 Scalar Number Functions 33
Comments 14
2.3 DAX Syntax 15
8 MEASURES Page
Functions and Arguments 15 -
Mathematical Operators 16 8.1 Introduction to Measures 34
Concatenating Text 16 What Measures Are 34
Examples of Measures 34
3 DAX STUDIO Page 8.2 Creating a Measures Table 35
3.1 Using DAX Studio 17 8.3 Creating Measures 36
Installing DAX Studio 17 8.4 Quick Measures 37
Connecting to your Data Model 17 Starting a Quick Measure 37
3.2 Five Uses of DAX Studio 18 Creating the Base Value 38
. . Setting any Filtering 38
Use 1 - Getting at DAX Functions 18 Using a Quick Measure 39
Use 2 — Writing DAX Queries 18
Use 3 — Better Formatting 19 8.5 DAX Aggregation Functions 40
Use 4 — Saving DAX 19 8.6 Aggregating Expressions 41
Use 5 — Getting at Internal Data 19
The Problem 41
Why the Simple Solution Won’t Work 41
4 TESTING CONDITIONS Page The Answer — X-Suffix Functions 42
4.1 Testing Single Conditions 20 Syntax of AggregateX Functions 42
The IE Function 20 8.7 Calculating Ratios 43
Relational Operators 20 Counting Rows using the COUNTROWS 43
Logical Operators 21 Function
Using IN to Test if ltems Exist in a List 21 Creating Ratios: the Fields Needed 43
. The Final Matrix 44
4.2 The SWITCH Function 22 Summing Ratios Wouldn’t Work 44
© Copyright 2023 Page 2

EgWise
Training

TABLE OF CONTENTS (2 of 4)

9 FILTER CONTEXT Page 13 THE FILTER FUNCTION Page
9.1 Our Simple Example 45 13.1 The Basic FILTER Function 67
9.2 How Filter Context Works 46 Using CALCULATE as an Alternative to 67
FILTER
What We’re Working Towards 46
Step 1 — Assembling the Data 47 13.2 FILTER as an lterator Function 68
Step 2 — Working out the Filter Context 48 Starting Off — Our Example 68
Step 3 — Getting the Filtered Data for the 49 Getting the Filter Context 68
Context . Row Context within this Filter Context 69
Step 4 - Aggregating the Data 49 Deriving the Final Result 69
13.3 Multiple Conditions in FILTER 70
10 ROW CONTEXT Page Functions
10.1 Row Context for Calculated Columns 50 Combining Conditions using && and || 70
10.2 lterator Functions 51 Combining Conditions using AND / OR 70
Combining Conditions by Nesting the 71
Normal Aggregate Functions Use Filter 51 FILTER Function
Context _
Iterator Functions Use Row Context 52 13.4 Using ALL and FILTER 72
13.5 FILTER and CALCULATE aren’t 72
11 THE CALCULATE FUNCTION Page Equivalent
11.1 Syntax of the CALCULATE Function 53
14 THE VALUES FUNCTION Page
11.2 Removing a Constraint 53 X X
14.1 Introducing the VALUES Function 74
Our Example 54)
A Quick Note on Ratios 54 14.2 DeteCtlng the Number of Values 75
The Formula for this Example 55 The HASONEVALUE Function 75
How this Works 55 Using COUNTROWS to Count VALUES 76
11.3 Removing Multiple Constraints 56 14.3 Using VALUES to Modify Filter 77
Using Multiple ALL Functions 56 Context
Using ALLEXCEPT 57 The Obvious Way doesn’t Work 77
11.4 Replacing a Constraint 58 gféré?eﬁe VALUES Function to Solve the 77
I;:tl(t;er; ggiaontext Revisited — Column 58 144 Parameter Tables 78
I;'l;)kaeplacing Filter Context Really 59 14.5 Dynamic Titles using ISFILTERED 79
'orks
] Dynamic Titles for Single-Value Filters 79
11.5 Using ALLSELECTED 60 Dynamic Titles for Multi-Value Filters 80
11.6 Context Transition 61
15 CALENDAR TABLES Page
12 VARIABLES Page 15.1 What are Calendar Tables? 81
121 Referring to Measures within 62 Requirements for a Calendar Table 81
Measures Why you Need a Calendar Table 81
122 Creating Variables 63 15.2 Creating a Calendar 82
12.3 Lazy Evaluation and its Implications 64 Step 1 — Getting the Calendar Data 82
12.4 Storing Tables in Variables 65 Step 2 — Loading and Linking to the 83
))) Calendar Table
12.5 Debugging using Variables 66 Step 3 — Mark your Table as a Date 83
Table
Step 4 — Setting the Year as Text 84
Step 5 - Setting a Sort Month 84
15.3 Date Granularity 85
15.4 Special Days 86
Page 3

© Copyright 2023 g@.ﬁms‘e‘ \
raining

TABLE OF CONTENTS (3 of 4)

18 DAX DATE FUNCTIONS Page
16 MULTIPLE DATE TABLES Page 18.1 Contents of the Chapter 99
16.1 The Problem, and Two Solutions 87 18.2 Period to Date 100
Repeat the Table or the Relationship? 87 Using DATESYTD, DATESQTD and 100
16.2 Solution One: Duplicate the Calendar 88 DA,TESMTD
Table Using TOTALYTD, TOTALQTD and 100
TOTALMTD
Step 1 - Importing and Linking to the 88 . .)
Ca/gndar Tgb/esg g 18.3 Changing the Financial Year End 101
Step 2 — Renaming Tables and Fields 89 Functions with a Year End Date 101
Step 3 — Using your Multiple Calendars 89 Argument
16.3 Solution Two: Duplicate the 90 egsgrleg/]l;% Data for Different Financial 102
Relationship
18.4 Referencing Previous Periods 103
Creating the Duplicate Relationships 90 ng viou !
Interlude - The CALCULATETABLE 91 The SAMEPERIODLASTYEAR Function 103
Function The DATEADD Function 103
The USERELATIONSHIP Function 91 .
Our Measures 92 18.5 Parallel Periods 104
164 CROSSFILTER Function o3| |186 Moving Averages 105
. . . Definition of a Moving Average 105
82,‘3”86,?7’(‘;;‘,'3" Change the Relationships 93 Moving Average using DATESINPERIOD 106
s nd LASTDATE
A Better Solution — Use DAX to 94 7/Ioving Average using 106
Temporarily Cross-Filter DATESBETWEEN, NEXTDATE and
Multiple Cross-Filtering 94 LASTDATE
18.7 Semi-Additive Measures 107
17 HOW TIME INTELLIGENCE Page
FUNCTIONS WORK 9 Usgful Semi-Additive Functions 107
Using the FIRSTDATE and LASTDATE 107
17.1 Our Example 95 Functions
. . ing FIRSTNONBLANK 1
17.2 Filter Context Reminder 96 Il_jf\g?NON?BLA(I)\IK and 08
17.3 Year-to-Date using CALCULATE 97 Detecting Relationships in 108
FIRSTNONBLANK / LASTNONBLANK
17.4 Year-to-Date using Time-Intelligence 98
Functions
The DATESYTD Function 98 . RANKING Page
The TOTALYTD Function 98 19.1 The RANKX Function 109
Syntax of the Rank Function 109
Intellisense for the RANKX Function 109
19.2 RANKX for Calculated Columns 110
19.3 Ranking Measures (Existing Columns) 111
The Most Common Problem — Omitting 111
ALL
The Solution using ALL 111
19.4 Ranking using Aggregate Calculations 112
RANKX is an lterator Function 112
19.5 Ranking with Context 113
Suppressing Totals 113
Ranking over Selected Items 113
© Copyright 2023 Page 4

gﬁWise
Training

TABLE OF CONTENTS (4 of 4)

20 THE EARLIER FUNCTION Page
20.1 Case Study of the EARLIER Function 114
Our Example 114
An Outline of the EARLIER Function 114
Row Context within Filter Context 115
The Final Formula 116
20.2 Another Example — Running Totals 117
20.3 Using Variables instead of the 118
EARLIER Function
Ranking Sales using Variables 118
Running Totals using Variables 118
21 BANDING Page
211 What is Banding? 119
Creating and Loading a Banding Table 119
21.2 Creating a Banding Formula 120
21.3 Sorting the Bands 121
22 PARENT-CHILD HIERARCHIES Page
22.1 What is a Parent-Child Hierarchy? 122
22.2 Creating a Parent-Child Hierarchy 123
Step 1 — Create a List of Parent Ids (the 123
PATH Function)
Step 2 — Working out the Path Depth (the 123
PATHLENGTH Function)
Step 3 — Create a Measure Showing the 123
Number of Levels
Step 4 - Finding Managers at Each Level 124
(PATHITEM and LOOKUPVALUE)
Step 5 — Creating a Hierarchy 125
Step 6 — Creating your Visual 125

© Copyright 2023

ggWise
Training

Page 5

Chapter 1 - Getting Started

CHAPTER 1 - GETTING STARTED

1.1 Introducing DAX

The DAX language (standing loosely for Data Analysis eXpressions) allows you to create calculated
columns, measures and queries (an example of each is shown in this section).

Where is DAX used?

You can write DAX within the following programs:

Program Notes

Power Bl Power Bl is a standalone application which allows you to create business
intelligence reports, and publish them to a website or server.

PowerPivot PowerPivot is an add-in within Excel which allows you to combine data from
multiple data sources, and present this in a pivot table.

SQL Server Analysis | SSAS Tabular allows you to combine data from lots of different data sources,
Services (Tabular) apply security to it to control who sees what and then allow employees of your
organisation to share the resulting data model.

DAX initially looks similar to Excel, but you will quickly realise that it is actually very
different!

How DAX is Used 1 - Calculated Columns
A calculated column is like a formula in Excel:
1 Sales value = [Price] * [Quantity] This DAX calculated column
gives the sales value for each
PurchaseDate |.)| Productld Centreld

v | Quantity |~ | Price |~ | 'Salesvalue ~T— | row of a purchases table, by
4.99 4.99 multiplying the quantity of

21 July 2021 4 267 1 f /)
_ items bought by the price paid.
21 July 2021 19 244 1 3.99 3.99
21 July 2021 4 375 1 4.99 4.99
21 July 2021 10 101 1 3.99 2.95

As we will see in this manual, a calculated column is evaluated for each row of a table; DAX creates
a row context for each separate calculation.

© Copyright 2023 g‘*"‘"ﬁe- \ Page 6
raining

Chapter 1 - Getting Started

How DAX is Used 2 — Measures

Much of this courseware will be devoted to
creating measures like this one, to calculate
the value of sales for any region, year or
other constraint:

Measures use the same language, but are
usually more complicated (and always involve
some aggregation).

This measure is showing that total sales for the
East Anglia region and Air environment are
£1,268.71. As we will see, each measure is
calculated for a particular combination of
constraints called the filter context.

1 Total sales = SUMX(
2
=3 m the value of all sales for each
4 cell in the current filter context
5 Purchase,
5 [Price] * [Quantity]
70
RegionMame Air Land Water Total
East Anglia 1,268.71 1364028 205091 16,959.90
East Midlands 2,600.87 26,28048 5033.67 33,933.02
London 480945 5401862 913650 68,054.57
North 287462 2598055 4334490 33,189.66
MNorth We: 795017 6975118 1261471 90,316.06
10,697.97 10217104 17507.12 130,376.13
261648 2376050 450669 30,892.97
West Midlands 470233 4911682 887873 62.607.88
Yorkshire 8 Humberside 6,231.78 4739627 850978 62,137.83
Total 43,851.38 412,134.04 72,572.60 528,558.02

How DAX is Used 3 — Queries

As well as for creating calculated columns and measures, you can also use DAX to create queries
to get data out of a Power BI, PowerPivot or SSAS Tabular data model:

The DAX query language is similar to SQL, but whereas SQL is used to
get data out of a relational database, DAX is used to get data out of a data

1

2 // list out the regions

3 EVALUATE del
4 Region model.
5 ORDER BY A

6 Region[RegionName]

145 %~
Results

Regionld RegionName
1 East Anglia
2 East Midlands
3 London
4 MNorth
5 Morth West
6 South East
7 South West

8 West Midlands
9 Yorkshire & Humberside

This query lists out all of the regions in a data model, alphabetically by
region name.

© Copyright 2023

2 Wise

Training

Page 7

Chapter 1 - Getting Started

1.2 The Construct-a-Creature Database
This courseware uses data from the (fictitious) Wise Owl subsidiary Construct-a-Creature (a retail

chain loosely modelled on Build-a-Bear, but with a wider range of animals available for purchase).

The Database Tables and Relationships

Here are the tables in the Construct-a-Creature (CAC) database:

There are four geographical tables to do with where purchases took place, giving the shopping
centre, type of shopping centre, town and region.

Region /& : Town ‘o : Centre o
Regionld 1 Regicnid Centreld
RegionMame 4 L Townld ! - CentreName
Collapse TownName % CentreTypeld
Collapse > NumberUrnits L | |
* w
PostCode |
= - ¥ SquareMet *
CentreType o : - quarelvistres
| Townld Purchase ot
CentreTypeld 1 Collapse ~
CentreTypehame Centreld
PaymentDate
Collapse ~™
=P ¥ Price
= - Productld
=1 Fami : 1 “* B purchaseDate
Family & : [PurchaseDate
1 Product ICA 5] PurchaseDateTime
Familyld ‘ Z Purchaseld
FamilyMame - Animal Z Quahtity
Collapse ~ Habitat (CA ‘ Familyld 3 Staffld
ok Habitatld
BackColour 5 Collagse ~
2 Llegs
. — ok
— . Environmentld [ol
Environment o - % - - Productld
L FareColour 1 3 ProductionCost
Environmentld 1 —J Habitatld ProductMame
EnvironmentMame HabitatName > WeightGrams
Collapse ™ Collzpsz Collapse ~™
There are also four tables to do with the biological classification The purchases table specifies how many
of each animal (for example, a frog is an amphibian which lives in of each product were bought in each
a fresh water habitat in a watery environment). location in each transaction.

Training

© Copyright 2023 Eémseom Page 8

Chapter 1 - Getting Started

1.3 Column Storage

To understand how DAX works in Power Bl, and how to tweak it, it's vital to understand how the
underlying engine (called either VertiPaq or xVelocity, depending on what you read) stores data.

Row versus Column Storage

Most databases (such as SQL Server) use a

Productld ProductName Animal Habitatld Legs Familyld
row-based storage algorithm: 1 | Sammy Snake 1 0 1
/ 2 Pokyo Penguin 4 2 3
Typically each row in a table is stored as a record, and 3 Fenella Frog 7 4 4
is accessed by its primary key (unique identifier). 4 Layla Lemur 2 2 5
Power Bl models, by contrast, Productld ProductName Animal Habitatid Legs Famiyld
store data by column: 1 Sammy Snake 1 0 1
2 Pokyo Penguin 4 2 3
3 Fenella Frog 3 4 4
4 Layla 2 2 5
5 Dav Dachsund 1 4 5
In Power Bl columns are stored separately, which 6 Kylie Camel 5 4 5
makes any calculation summing or otherwise 7 Jeremy Jackdaw 7 2 3
aggregating this column run much more quickly. 8 Faye Fout 6 4 5

Data Compression

Duplicate column values are only ever stored once. Thus the Familyld and Legs columns above
might be stored something like this:

Column Dictionary Values
Familyld 1,2,3,4,5,6 0,2,3,4,4,4,2,42,1,4,5,4,2,0,3,4,4,4
Legs 0,2,4,6 0,1,2,1,2,2,1,2,1,0,2,3,2,1,0,2,2,2,2

This shows that the lower the cardinality of a column (ie the smaller the number of
distinct values there are, and hence the more duplication there is), the more
efficiently the data will be stored.

© Copyright 2023 gﬁ\"iﬁei wi Page 9
raining

Chapter 1 - Getting Started

Implications for Loading Data

What column storage implies is that you should avoid loading columns with high cardinality (that is,
with very little repeated data) unless you need them:

EEEEBEEEBES®

Navigator

Display Options ~

Centre
CentreType
Environment
Family
Habitat
Place
Product
Purchase

Region

0
(2

4 Construct a creature.xlsx [9]

Purchase
Purchaseld PurchaseDate
2 17/12/201]
10 21/12/201]
13 22/12/201
15 23/12/201
16 23/12/201
17 27/12/201]
18 27/12/201
22 29/12/201
35 04/01/201
/ 48 05/01/201
54 05/01/201
58

PurchaseDateTime

17/12/2015 14:30:00
21/12/2015 18:05:00
22/12/2015 11:41:00
23/12/2015 16:05:00
23/12/2015 16:15:00
27/12/2015 09:33:00
27/12/2015 12:02:00

29/12/2015 17:42:00
04/01/2016 18:25:00
05/01/2016 09:52:00
05/01/2016 10:13:00

B

oductld

14
14
14
14

2
14

2

1
14
14
14
14

Centreld

54
75
67
75

319

361

307

380

363

363

361

361

Quantity

You should avoid loading the Purchaseld column.
Itisn’t used to link to any other table, and it has
the highest possible cardinality (each number is
unique) so will take up a lot of memory.

The other column to avoid loading, since each time of
day is stored as a separate number internally (unless,
of course, you want to analyse purchases by the time of
day when they occurred).

Note that for the example above you have to import the Productld and Centreld
columns because they are used to link to other tables.

© Copyright 2023

gﬁ WiseOwl
Training

Page 10

Chapter 2 - Writing DAX

CHAPTER 2 - WRITING DAX

2.1 Calculated Columns

The simplest way to write DAX is as a entretd [<] quantity [~ |-
calculated column:)
252 2 .5
341 2
360 2 Sort ascending
309 2 Sort descending
270 2
326 2
331 2
383 2
Right-click on a column and choose to insert a new 255 2 Copy
one as here, then start typing into the formula bar 275 5 Copy table
which appears: .
I 21 2 New measure
1 Column = N
‘ New colugn
351 2
Referring to Columns/Fields
The easiest way to create a formula in DAX is to use the keyboard:
Sales = [<\\ a) After typing a name for your new column, type the opening square
=za] [Centreld] bracket symbol [.
B [Price]
B [Productld] b) Type in the first letter of the field /ja%es/![
T [PurchaseDate] you want to use (here q). E [Quantity]
=21 [PurchaseDateTime]
5= [Purchaseld] i —cli i ;
c) Either double-click on the field | Sales® [Qua ntlty]l
1 [Quantity] name to insert it, or press TAB. [|
Sales = [Quantity] * [Price] 4—— d) Continue in this way to build up the formula you want to create.

1 Sales = [Quantity] * [Price] e) When you press ENTER to
create your formula, DAX will
PurchaseDate |..| Productld |~ | Centreld |~ | Quantity |~ | Price |~ | Sales ~ || q— calculate it and show the
21 July 2021 4 267 s 499 . results for every row in the
table.
21 july 2021 10 223 1 3.99 3.99
21 july 2021 4 375 1 4.99 4.99

© Copyright 2023 g@ pWiS19_\> Page 11
raining

Chapter 2 - Writing DAX

Referring to Tables

If you want to refer to a table, the easiest way to do it is to type in the D apostrophe character:

sumx(l
SUMX(Table, Expression)
Returns the sum of an expression evaluat
3] ADDCOLUMNS i
() ADDMISSINGITEMS g
(&) ALL
(&) ALLEXCEPT

Example =

(&) ALLNOBLANKROW

When an expression
calls for a table ...

L Example = SUMX('|

... type an apostrophe
symbol to bring up a list
of just the table names.

'Centre Type'
'Environment'
'Family'
'Habitat'

'Product'
'Purchase’

'Region’

'Town'

SUMX(Table, Expression)
Returns the sum of an exp

Although the method above makes it easy to insert a table name into a formula, the
apostrophe characters are optional, and most people miss them out. The exception
to this is when your table name is also a reserved word (for example, Calendar is a
table name which you would have to type as ‘Calendar’).

Fully Qualified References

You can always refer to a column using its full reference:

=TableName[ColumnName]

However, you can often miss out the table name where it is unambiguous from the context. So both

of these calculated columns will work:

Here we haven't specified the table name, so
DAX assumes that it is the current one.

Productld

4
10

Centreld

/‘LSales = [Quantity] * [Price]

= | Quantity |~ Price - Sales

367 1 4,99

2232 1 2.89

4.99
3.99

Here, by contrast, we have included the table
name, even though it wasn’t necessary.

/leales

Productid

-

4

10

Centreld

Purchase[Quantity] * Purchase[Price]

= || Quantity |~ Price - Sales

367 1 4.99

223 1 3.99

4.99
2.99

they’re not needed).

It’s probably best practice always to fully qualify column references in DAX (although
the author confesses to frequently taking the lazy way out and omitting them where

© Copyright 2023

E,@. WiseOwl
Training

Page 12

Chapter 2 - Writing DAX

2.2 Writing DAX

The more you get into DAX, the longer and more complicated your formulae will become — and the
more important it will be to format and comment them properly!

Laying out your Formulae

DAX formulae can quickly become quite long, and hard to read. You can make formulae easier to
interpret by indenting arguments to functions:

)

Size = IF(
[SquareMetres] > 10000, €—|
"Large",
"Small"

Using multiple lines and indenting code
together make formulae easier to read.

When you copy DAX formulae from Power Bl you lose any colours. Because of this
all of the formulae in this courseware are copied from DAX Studio, a separate
standalone DAX editor. As a result the colours shown will have slightly different
shading to those you’ll see in Power Bl.

Using Multiple Lines

You can use this drop down arrow to give yourself more space to work in:

1 Size = IF(|

Centreld [.T CentreName

1 Pavilion Shopping Centre

e

~ | Placeld 1+ | CentreTypel
180 A

more room for typing.

Click on this drop arrow to give yourself

Size = IF(

1

2

3 [SquareMetres] > 10088,
4 "Large",

5 "Small"

6)

You can also use the following keys to add carriage returns into a formula:

Too much room,
sometimes! Click
again to collapse
the space.

What it does

Key
[Shift]| + Add a new line, and also an indentation level if appropriate.

+ Add a new line, but don’t indent it.

Irritatingly, the one key which doesn’t work is just pressing Enter. Instead, this
makes Power Bl create your formula, even if you haven’t finished it. You'll then have
to sort out the brackets Power Bl has thoughtfully added at the end of the formula to
make your parentheses balance out!

© Copyright 2023

A -
8;;W|se)
Training

Page 13

Chapter 2 - Writing DAX

Pressing the TAB Key

When you've typed in a function or field, the best key that you can press is [Tab|. This is true even
if you've typed in the whole name of a function:

SizeVerdict = ifl Here we've typed in the full function
IF(LogicalTest, | —— name IF, but it's in lower case and
htreNar| ~ | Placeld L
Checks wheth we need a bracket to follow it.
ilion Shopy)
X) .
rth Quay Re P Pressing the TAB key will solve Ko< | placera IT(LOgicalTest, ResultlfT
rman Park - both problems with one keystroke! N) Checks whether a cond
'#:IFERROR ilion Shop if EALSE
Comments
You can’t insert comments at the start of DAX formulae:
L // this won't work This formula won’t work,
2 Size = IF(because even though
3 [SquareMetres] > 10000, the comment syntax is
a "L ", . .
N valid DAX will take the
6) a comment as the start of
entreld |,t| CentreNar| ~| Placeld |~ | CentreTypeld |~ | PostCode |~ | SquareMetres |~ | NumberUnits |~ | /f this won't workSize |~ the forml'"a' and n_ame
" owur . the column accordingly!
1 | Pavilion Shop 180 3 EN87TBZ 15143 62 Large
2 | Times Square 170 3 SM11LF 15143 71 large

You can, however, insert them anywhere else, using one of 3 different syntaxes:

You can add comments at the end of formulae using one of these
three syntaxes (although until you learn DAX variables it's not
obvious why you’d want to do this).

Size = IF(
// condition (bigger than
// 20,000 square metres)
[SquareMetres] > 20000,

“Large",

// otherwise return SMALL
"Small"

// return LARGE if a centre is big

You can also (more
usefully) put comments
between arguments —
any line beginning with //
or - - will be ignored.

T~

Size = IF(
[SquareMetres] > 20000,
"Large",
"Small"
)
// this formula categories
// shopping centres by size

-- you can also write comments
-- like this

/*

or even with long comments
like this

*/

© Copyright 2023

A -
EEgVWse
Training

Page 14

Chapter 2 - Writing DAX

2.3 DAX Syntax

This section explains the rules you have to follow when creating DAX formulae.

Functions and Arguments

When you type any DAX function, Intellisense will tell you the arguments you need to specify. Here's

an example:

A simple DAX function,

something is true or false.

ilion Shopy

SizeVerdict = IF (l

returning different values if frenar « | placeid IF(LogicalTest, ResultlfTrue, [ResultlfFalse])
Checks whether a condition is met, and returns one value if TRUE, and another valud

if FALSE.

Here are the arguments to this function (the bits of information that you need to specify):

Argument name | Status What it should contain

LogicalTest Compulsory | A test to perform to see if something is true or not
ResultlfTrue Compulsory | What to return if the test returns true
ResultifFalse Optional What to return if the test returns false

You can tell whether an argument is compulsory or optional by seeing whether it is
enclosed in square brackets [like this].

© Copyright 2023

A -
E.eWme)
Training

Page 15

Chapter 2 - Writing DAX

Mathematical Operators

You can use the following standard mathematical symbols in DAX expressions:

Symbol What it means

Example

/1] Addition / subtraction

=3+ 5 -2 would return 6

/ Multiplication / division

=2*6/3 would return 4

Raising to the power of

=2 " 3 would return 8

Standard rules of arithmetic (BODMAS) apply: so 2 + 3 * 5 would return 17, since the multiplication
would take precedence over the addition.

A

_| Wise

Hint

Division and multiplication take equal precedence, and are read from left to right. So
15/ 3 * 2 would return 10, not 2.5.

Concatenating Text

There are two ways to join text together. You can either use the | & | symbol:

FirstName
Leah
Lara

Suzanna

Dol

+ | LastName
Menzies
Bhangu

Pederson

Caccois

1 StaffName = [FirstName] & " " & [LastMame] <€— |

Dateloined v StaffName
13 August 2016 Leah Menzies
26 March 2011 | Lara Bhangu

28 August 2012 Suzanna Pederson

=Y ok ant | Peoboo Corats

This formula would join together the first name
and last name fields, with a space in between.

Or alternatively, the CONCATENATE function (although this doesn’t work well when you have
more than two things that you want to join together):

1 StaffMame = CONCATEMATE(CONCATEMATE([FirstName]," "), [LastName])) w Unlike in Excel, to join more than two
F | FirstMame |+ | LastName Dateloined - StaffName ;:pc;gtlsot]ogztmhgr r};]oaukit;]avfeo:oar;%esast the
S | Leah Menzies 13 August 2016 | Leah Menzies formula. ' g y
1 Lara Bhangu 26 March 2011 | Lara Bhangu
0 | Suzanna Pederson 28 August 2012 | Suzanna Pederson
© Copyright 2023 4 Wise Page 16

E

Training

What we do!

Basic Advanced Systems /
training training consultancy

Microsoft Excel

VBA macros

Eg
E.-
Office Scripts E"
Eﬁ

Microsoft Access

Power BI

Power Apps

Business
Intelligence

g e e

Power Automate / PAD

SQL

Reporting Services

Report Builder

-
(]
>
.
Q
)]
.|
o
)]

Integration Services

e Sl S S S
i Sl S S &
i Sl S S &

Analysis Services

Visual C# programming

VB programming

DAX

i Sl S Sl &
i Sl S Sl &

Python

g WiseOw!

Training

Training | Internet | Intranet | Database systems
www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

| WiseOw!

09)
- Training

&

Training | Internet | Intranet | Database systems
www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

