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Chapter 1 - Getting Started

CHAPTER 1 - GETTING STARTED

1.1  Introducing DAX

The DAX language (standing loosely for Data Analysis eXpressions) allows you to create calculated
columns, measures and queries (an example of each is shown in this section).

Where is DAX used?

You can write DAX within the following programs:

Program Notes

Power Bl Power Bl is a standalone application which allows you to create business
intelligence reports, and publish them to a website or server.

PowerPivot PowerPivot is an add-in within Excel which allows you to combine data from
multiple data sources, and present this in a pivot table.

SQL Server Analysis | SSAS Tabular allows you to combine data from lots of different data sources,
Services (Tabular) apply security to it to control who sees what and then allow employees of your
organisation to share the resulting data model.

DAX initially looks similar to Excel, but you will quickly realise that it is actually very
different!

How DAX is Used 1 - Calculated Columns
A calculated column is like a formula in Excel:
1 Sales value = [Price] * [Quantity] This DAX calculated column
gives the sales value for each
PurchaseDate |.)| Productld Centreld

v | Quantity |~ | Price |~ | 'Salesvalue ~T— | row of a purchases table, by
4.99 4.99 multiplying the quantity of

21 July 2021 4 267 1 f / )
_ items bought by the price paid.
21 July 2021 19 244 1 3.99 3.99
21 July 2021 4 375 1 4.99 4.99
21 July 2021 10 101 1 3.99 2.95

As we will see in this manual, a calculated column is evaluated for each row of a table; DAX creates
a row context for each separate calculation.

© Copyright 2023 g‘*"‘"ﬁe- \ Page 6
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Chapter 1 - Getting Started

How DAX is Used 2 — Measures

Much of this courseware will be devoted to
creating measures like this one, to calculate
the value of sales for any region, year or
other constraint:

Measures use the same language, but are
usually more complicated (and always involve
some aggregation).

This measure is showing that total sales for the
East Anglia region and Air environment are
£1,268.71. As we will see, each measure is
calculated for a particular combination of
constraints called the filter context.

1 Total sales = SUMX(
2
=3 m the value of all sales for each
4 cell in the current filter context
5 Purchase,
5 [Price] * [Quantity]
70
RegionMame Air Land Water Total
East Anglia 1,268.71 1364028 205091 16,959.90
East Midlands 2,600.87 26,28048  5033.67 33,933.02
London 480945 5401862 913650 68,054.57
North 287462 2598055 4334490  33,189.66
MNorth We: 795017 6975118 1261471 90,316.06
10,697.97 10217104 17507.12 130,376.13
261648 2376050 450669  30,892.97
West Midlands 470233 4911682 887873 62.607.88
Yorkshire 8 Humberside 6,231.78 4739627 850978 62,137.83
Total 43,851.38 412,134.04 72,572.60 528,558.02

How DAX is Used 3 — Queries

As well as for creating calculated columns and measures, you can also use DAX to create queries
to get data out of a Power BI, PowerPivot or SSAS Tabular data model:

The DAX query language is similar to SQL, but whereas SQL is used to
get data out of a relational database, DAX is used to get data out of a data

1

2 // list out the regions

3 EVALUATE del
4 Region model.
5 ORDER BY A

6 Region[RegionName]

145 %~
Results

Regionld RegionName
1 East Anglia
2 East Midlands
3 London
4 MNorth
5 Morth West
6 South East
7 South West

8 West Midlands
9 Yorkshire & Humberside

This query lists out all of the regions in a data model, alphabetically by
region name.

© Copyright 2023
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Chapter 1 - Getting Started

1.2 The Construct-a-Creature Database
This courseware uses data from the (fictitious) Wise Owl subsidiary Construct-a-Creature (a retail

chain loosely modelled on Build-a-Bear, but with a wider range of animals available for purchase).

The Database Tables and Relationships

Here are the tables in the Construct-a-Creature (CAC) database:

There are four geographical tables to do with where purchases took place, giving the shopping
centre, type of shopping centre, town and region.

Region /& : Town ‘o : Centre o
Regionld 1 Regicnid Centreld
RegionMame 4 L Townld ! - CentreName
Collapse TownName % CentreTypeld
Collapse > NumberUrnits L | |
* w
PostCode |
= - ¥ SquareMet *
CentreType o : - quarelvistres
| Townld Purchase ot
CentreTypeld 1 Collapse ~
CentreTypehame Centreld
PaymentDate
Collapse ~™
=P ¥ Price
= - Productld
=1 Fami : 1 “* B purchaseDate
Family & : [ PurchaseDate
1 Product ICA 5] PurchaseDateTime
Familyld ‘ Z Purchaseld
FamilyMame - Animal Z Quahtity
Collapse ~ Habitat (CA ‘ Familyld 3 Staffld
ok Habitatld
BackColour 5 Collagse ~
2 Llegs
. — ok
— . Environmentld [ ol
Environment o - % - - Productld
L FareColour 1 3 ProductionCost
Environmentld 1 —J Habitatld ProductMame
EnvironmentMame HabitatName > WeightGrams
Collapse ™ Collzpsz Collapse ~™
There are also four tables to do with the biological classification The purchases table specifies how many
of each animal (for example, a frog is an amphibian which lives in of each product were bought in each
a fresh water habitat in a watery environment). location in each transaction.

Training
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Chapter 1 - Getting Started

1.3 Column Storage

To understand how DAX works in Power Bl, and how to tweak it, it's vital to understand how the
underlying engine (called either VertiPaq or xVelocity, depending on what you read) stores data.

Row versus Column Storage

Most databases (such as SQL Server) use a

Productld  ProductName  Animal Habitatld Legs  Familyld
row-based storage algorithm: 1 | Sammy Snake 1 0 1
/ 2 Pokyo Penguin 4 2 3
Typically each row in a table is stored as a record, and 3 Fenella Frog 7 4 4
is accessed by its primary key (unique identifier). 4 Layla Lemur 2 2 5
Power Bl models, by contrast, Productld  ProductName Animal Habitatid Legs  Famiyld
store data by column: 1 Sammy Snake 1 0 1
2 Pokyo Penguin 4 2 3
3 Fenella Frog 3 4 4
4 Layla 2 2 5
5 Dav Dachsund 1 4 5
In Power Bl columns are stored separately, which 6 Kylie Camel 5 4 5
makes any calculation summing or otherwise 7 Jeremy Jackdaw 7 2 3
aggregating this column run much more quickly. 8 Faye Fout 6 4 5

Data Compression

Duplicate column values are only ever stored once. Thus the Familyld and Legs columns above
might be stored something like this:

Column Dictionary Values
Familyld 1,2,3,4,5,6 0,2,3,4,4,4,2,42,1,4,5,4,2,0,3,4,4,4
Legs 0,2,4,6 0,1,2,1,2,2,1,2,1,0,2,3,2,1,0,2,2,2,2

This shows that the lower the cardinality of a column (ie the smaller the number of
distinct values there are, and hence the more duplication there is), the more
efficiently the data will be stored.

© Copyright 2023 gﬁ\"iﬁei wi Page 9
raining



Chapter 1 - Getting Started

Implications for Loading Data

What column storage implies is that you should avoid loading columns with high cardinality (that is,
with very little repeated data) unless you need them:

EEEEBEEEBES®

Navigator

Display Options ~

Centre
CentreType
Environment
Family
Habitat
Place
Product
Purchase

Region

0
(2

4 Construct a creature.xlsx [9]

Purchase
Purchaseld PurchaseDate
2 17/12/201]
10 21/12/201]
13 22/12/201
15 23/12/201
16 23/12/201
17 27/12/201]
18 27/12/201
22 29/12/201
35 04/01/201
/ 48 05/01/201
54 05/01/201
58

PurchaseDateTime

17/12/2015 14:30:00
21/12/2015 18:05:00
22/12/2015 11:41:00
23/12/2015 16:05:00
23/12/2015 16:15:00
27/12/2015 09:33:00
27/12/2015 12:02:00

29/12/2015 17:42:00
04/01/2016 18:25:00
05/01/2016 09:52:00
05/01/2016 10:13:00

B

oductld

14
14
14
14

2
14

2

1
14
14
14
14

Centreld

54
75
67
75

319

361

307

380

363

363

361

361

Quantity

You should avoid loading the Purchaseld column.
Itisn’t used to link to any other table, and it has
the highest possible cardinality (each number is
unique) so will take up a lot of memory.

The other column to avoid loading, since each time of
day is stored as a separate number internally (unless,
of course, you want to analyse purchases by the time of
day when they occurred).

Note that for the example above you have to import the Productld and Centreld
columns because they are used to link to other tables.

© Copyright 2023
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Chapter 2 - Writing DAX

CHAPTER 2 - WRITING DAX

2.1 Calculated Columns

The simplest way to write DAX is as a entretd [<] quantity [~ |-
calculated column: )
252 2 .5
341 2
360 2 Sort ascending
309 2 Sort descending
270 2
326 2
331 2
383 2
Right-click on a column and choose to insert a new 255 2 Copy
one as here, then start typing into the formula bar 275 5 Copy table
which appears: .
I 21 2 New measure
1 Column = N
‘ New colugn
351 2
Referring to Columns/Fields
The easiest way to create a formula in DAX is to use the keyboard:
Sales = [<\\ a) After typing a name for your new column, type the opening square
=za] [Centreld] bracket symbol [.
B [Price]
B [Productld] b) Type in the first letter of the field /ja%es/![
T [PurchaseDate] you want to use (here q). E [Quantity]
=21 [PurchaseDateTime]
5= [Purchaseld] i —cli i ;
c) Either double-click on the field | Sales® [Qua ntlty]l
1 [Quantity] name to insert it, or press TAB. [ |
Sales = [Quantity] * [Price] 4—— d) Continue in this way to build up the formula you want to create.

1 Sales = [Quantity] * [Price] e) When you press ENTER to
create your formula, DAX will
PurchaseDate |..| Productld |~ | Centreld |~ | Quantity |~ | Price |~ | Sales  ~ || q— calculate it and show the
21 July 2021 4 267 s 499 . results for every row in the
table.
21 july 2021 10 223 1 3.99 3.99
21 july 2021 4 375 1 4.99 4.99

© Copyright 2023 g@ pWiS19_\> Page 11
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Chapter 2 - Writing DAX

Referring to Tables

If you want to refer to a table, the easiest way to do it is to type in the D apostrophe character:

sumx(l
SUMX(Table, Expression)
Returns the sum of an expression evaluat
3] ADDCOLUMNS i
() ADDMISSINGITEMS g
(&) ALL
(&) ALLEXCEPT

Example =

(&) ALLNOBLANKROW

When an expression
calls for a table ...

L Example = SUMX('|

... type an apostrophe
symbol to bring up a list
of just the table names.

'Centre Type'
'Environment'
'Family'
'Habitat'

'Product'
'Purchase’

'Region’

'Town'

SUMX(Table, Expression)
Returns the sum of an exp

Although the method above makes it easy to insert a table name into a formula, the
apostrophe characters are optional, and most people miss them out. The exception
to this is when your table name is also a reserved word (for example, Calendar is a
table name which you would have to type as ‘Calendar’).

Fully Qualified References

You can always refer to a column using its full reference:

=TableName[ColumnName]

However, you can often miss out the table name where it is unambiguous from the context. So both

of these calculated columns will work:

Here we haven't specified the table name, so
DAX assumes that it is the current one.

Productld

4
10

Centreld

/‘LSales = [Quantity] * [Price]

= | Quantity |~ Price - Sales

367 1 4,99

2232 1 2.89

4.99
3.99

Here, by contrast, we have included the table
name, even though it wasn’t necessary.

/leales

Productid

-

4

10

Centreld

Purchase[Quantity] * Purchase[Price]

= || Quantity |~ Price - Sales

367 1 4.99

223 1 3.99

4.99
2.99

they’re not needed).

It’s probably best practice always to fully qualify column references in DAX (although
the author confesses to frequently taking the lazy way out and omitting them where

© Copyright 2023
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Chapter 2 - Writing DAX

2.2 Writing DAX

The more you get into DAX, the longer and more complicated your formulae will become — and the
more important it will be to format and comment them properly!

Laying out your Formulae

DAX formulae can quickly become quite long, and hard to read. You can make formulae easier to
interpret by indenting arguments to functions:

)

Size = IF(
[SquareMetres] > 10000, €—|
"Large",
"Small"

Using multiple lines and indenting code
together make formulae easier to read.

When you copy DAX formulae from Power Bl you lose any colours. Because of this
all of the formulae in this courseware are copied from DAX Studio, a separate
standalone DAX editor. As a result the colours shown will have slightly different
shading to those you’ll see in Power Bl.

Using Multiple Lines

You can use this drop down arrow to give yourself more space to work in:

1 Size = IF(|

Centreld [.T CentreName

1 Pavilion Shopping Centre

e

~ | Placeld 1+ | CentreTypel
180 A

more room for typing.

Click on this drop arrow to give yourself

Size = IF(

1

2

3 [SquareMetres] > 10088,
4 "Large",

5 "Small"

6 )

You can also use the following keys to add carriage returns into a formula:

Too much room,
sometimes! Click
again to collapse
the space.

What it does

Key
[ Shift]| + Add a new line, and also an indentation level if appropriate.

+ Add a new line, but don’t indent it.

Irritatingly, the one key which doesn’t work is just pressing Enter. Instead, this
makes Power Bl create your formula, even if you haven’t finished it. You'll then have
to sort out the brackets Power Bl has thoughtfully added at the end of the formula to
make your parentheses balance out!

© Copyright 2023
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Chapter 2 - Writing DAX

Pressing the TAB Key

When you've typed in a function or field, the best key that you can press is [Tab|. This is true even
if you've typed in the whole name of a function:

SizeVerdict = ifl Here we've typed in the full function
IF(LogicalTest, | —— name IF, but it's in lower case and
htreNar| ~ | Placeld L
Checks wheth we need a bracket to follow it.
ilion Shopy )
X ) .
rth Quay Re P Pressing the TAB key will solve Ko< | placera IT(LOgicalTest, ResultlfT
rman Park - both problems with one keystroke! N ) Checks whether a cond
'#:IFERROR ilion Shop if EALSE
Comments
You can’t insert comments at the start of DAX formulae:
L // this won't work This formula won’t work,
2 Size = IF( because even though
3 [SquareMetres] > 10000, the comment syntax is
a "L ", . .
N valid DAX will take the
6 ) a comment as the start of
entreld |,t| CentreNar| ~| Placeld |~ | CentreTypeld |~ | PostCode |~ | SquareMetres |~ | NumberUnits |~ | /f this won't workSize |~ the forml'"a' and n_ame
" owur . the column accordingly!
1 | Pavilion Shop 180 3 EN87TBZ 15143 62 Large
2 | Times Square 170 3 SM11LF 15143 71 large

You can, however, insert them anywhere else, using one of 3 different syntaxes:

You can add comments at the end of formulae using one of these
three syntaxes (although until you learn DAX variables it's not
obvious why you’d want to do this).

Size = IF(
// condition (bigger than
// 20,000 square metres)
[SquareMetres] > 20000,

“Large",

// otherwise return SMALL
"Small"

// return LARGE if a centre is big

You can also (more
usefully) put comments
between arguments —
any line beginning with //
or - - will be ignored.

T~

Size = IF(
[SquareMetres] > 20000,
"Large",
"Small"
)
// this formula categories
// shopping centres by size

-- you can also write comments
-- like this

/*

or even with long comments
like this

*/

© Copyright 2023
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Chapter 2 - Writing DAX

2.3 DAX Syntax

This section explains the rules you have to follow when creating DAX formulae.

Functions and Arguments

When you type any DAX function, Intellisense will tell you the arguments you need to specify. Here's

an example:

A simple DAX function,

something is true or false.

ilion Shopy

SizeVerdict = IF (l

returning different values if frenar « | placeid IF(LogicalTest, ResultlfTrue, [ResultlfFalse])
Checks whether a condition is met, and returns one value if TRUE, and another valud

if FALSE.

Here are the arguments to this function (the bits of information that you need to specify):

Argument name | Status What it should contain

LogicalTest Compulsory | A test to perform to see if something is true or not
ResultlfTrue Compulsory | What to return if the test returns true
ResultifFalse Optional What to return if the test returns false

You can tell whether an argument is compulsory or optional by seeing whether it is
enclosed in square brackets [like this].

© Copyright 2023
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Chapter 2 - Writing DAX

Mathematical Operators

You can use the following standard mathematical symbols in DAX expressions:

Symbol What it means

Example

/1] Addition / subtraction

=3+ 5 -2 would return 6

/ Multiplication / division

=2*6/3 would return 4

Raising to the power of

=2 " 3 would return 8

Standard rules of arithmetic (BODMAS) apply: so 2 + 3 * 5 would return 17, since the multiplication
would take precedence over the addition.

A

_| Wise

Hint

Division and multiplication take equal precedence, and are read from left to right. So
15/ 3 * 2 would return 10, not 2.5.

Concatenating Text

There are two ways to join text together. You can either use the | & | symbol:

FirstName
Leah
Lara

Suzanna

Dol

+ | LastName
Menzies
Bhangu

Pederson

Caccois

1 StaffName = [FirstName] & " " & [LastMame] <€— |

Dateloined v StaffName
13 August 2016 Leah Menzies
26 March 2011 | Lara Bhangu

28 August 2012 Suzanna Pederson

=Y ok ant | Peoboo Corats

This formula would join together the first name
and last name fields, with a space in between.

Or alternatively, the CONCATENATE function (although this doesn’t work well when you have
more than two things that you want to join together):

1 StaffMame = CONCATEMATE(CONCATEMATE([FirstName]," "), [LastName])) w Unlike in Excel, to join more than two
F | FirstMame |+ | LastName Dateloined - StaffName ;:pc;gtlsot]ogztmhgr r};]oaukit;]avfeo:oar;%esast the
S | Leah Menzies 13 August 2016 | Leah Menzies formula. ' g y
1 Lara Bhangu 26 March 2011 | Lara Bhangu
0 | Suzanna Pederson 28 August 2012 | Suzanna Pederson
© Copyright 2023 4 Wise Page 16
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Integration Services
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Analysis Services

Visual C# programming

VB programming

DAX
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Python
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