
DAX for Power BI

Sample manual - first two chapters

Manual 1159 - 128 pages –

TABLE OF CONTENTS (1 of 4)

© Copyright 2023 Page 2

1 GETTING STARTED Page

1.1 Introducing DAX 6

 Where is DAX used? 6
 How DAX is Used 1 - Calculated Columns 6
 How DAX is Used 2 – Measures 7
 How DAX is Used 3 – Queries 7

1.2 The Construct-a-Creature Database 8

 The Database Tables and Relationships 8

1.3 Column Storage 9

 Row versus Column Storage 9
 Data Compression 9
 Implications for Loading Data 10

2 WRITING DAX Page

2.1 Calculated Columns 11

 Referring to Columns/Fields 11
 Referring to Tables 12
 Fully Qualified References 12

2.2 Writing DAX 13

 Laying out your Formulae 13
 Using Multiple Lines 13
 Pressing the TAB Key 14
 Comments 14

2.3 DAX Syntax 15

 Functions and Arguments 15
 Mathematical Operators 16
 Concatenating Text 16

3 DAX STUDIO Page

3.1 Using DAX Studio 17

 Installing DAX Studio 17
 Connecting to your Data Model 17

3.2 Five Uses of DAX Studio 18

 Use 1 - Getting at DAX Functions 18
 Use 2 – Writing DAX Queries 18
 Use 3 – Better Formatting 19
 Use 4 – Saving DAX 19
 Use 5 – Getting at Internal Data 19

4 TESTING CONDITIONS Page

4.1 Testing Single Conditions 20

 The IF Function 20
 Relational Operators 20
 Logical Operators 21
 Using IN to Test if Items Exist in a List 21

4.2 The SWITCH Function 22

5 LINKING TABLES Page

5.1 The RELATED Function 23

5.2 Dealing with Blanks 24

 BLANK Arithmetic 25

5.3 The RELATEDTABLE Function 26

6 TRAPPING ERRORS Page

6.1 Using the DIVIDE Function 27

6.2 Using IFERROR 28

 Generating your Own Errors using
ERROR

28

7 WORKING WITH DATA TYPES Page

7.1 DAX Data Types 29

7.2 Scalar Date Functions 30

7.3 Scalar Text Functions 31

 Finding and Replacing Text 31
 Converting Text 31
 Formatting Text 32
 Getting the Length of and Extracting Text 32

7.4 Scalar Number Functions 33

8 MEASURES Page

8.1 Introduction to Measures 34

 What Measures Are 34
 Examples of Measures 34

8.2 Creating a Measures Table 35

8.3 Creating Measures 36

8.4 Quick Measures 37

 Starting a Quick Measure 37
 Creating the Base Value 38
 Setting any Filtering 38
 Using a Quick Measure 39

8.5 DAX Aggregation Functions 40

8.6 Aggregating Expressions 41

 The Problem 41
 Why the Simple Solution Won’t Work 41
 The Answer – X-Suffix Functions 42
 Syntax of AggregateX Functions 42

8.7 Calculating Ratios 43

 Counting Rows using the COUNTROWS
Function

43

 Creating Ratios: the Fields Needed 43
 The Final Matrix 44
 Summing Ratios Wouldn’t Work 44

TABLE OF CONTENTS (2 of 4)

© Copyright 2023 Page 3

9 FILTER CONTEXT Page

9.1 Our Simple Example 45

9.2 How Filter Context Works 46

 What We’re Working Towards 46
 Step 1 – Assembling the Data 47
 Step 2 – Working out the Filter Context 48
 Step 3 – Getting the Filtered Data for the

Context
49

 Step 4 – Aggregating the Data 49

10 ROW CONTEXT Page

10.1 Row Context for Calculated Columns 50

10.2 Iterator Functions 51

 Normal Aggregate Functions Use Filter
Context

51

 Iterator Functions Use Row Context 52

11 THE CALCULATE FUNCTION Page

11.1 Syntax of the CALCULATE Function 53

11.2 Removing a Constraint 53

 Our Example 54
 A Quick Note on Ratios 54
 The Formula for this Example 55
 How this Works 55

11.3 Removing Multiple Constraints 56

 Using Multiple ALL Functions 56
 Using ALLEXCEPT 57

11.4 Replacing a Constraint 58

 Filter Context Revisited – Column
Storage

58

 How Replacing Filter Context Really
Works

59

11.5 Using ALLSELECTED 60

11.6 Context Transition 61

12 VARIABLES Page

12.1 Referring to Measures within
Measures

62

12.2 Creating Variables 63

12.3 Lazy Evaluation and its Implications 64

12.4 Storing Tables in Variables 65

12.5 Debugging using Variables 66

13 THE FILTER FUNCTION Page

13.1 The Basic FILTER Function 67

 Using CALCULATE as an Alternative to
FILTER

67

13.2 FILTER as an Iterator Function 68

 Starting Off – Our Example 68
 Getting the Filter Context 68
 Row Context within this Filter Context 69
 Deriving the Final Result 69

13.3 Multiple Conditions in FILTER
Functions

70

 Combining Conditions using && and || 70
 Combining Conditions using AND / OR 70
 Combining Conditions by Nesting the

FILTER Function
71

13.4 Using ALL and FILTER 72

13.5 FILTER and CALCULATE aren’t
Equivalent

72

14 THE VALUES FUNCTION Page

14.1 Introducing the VALUES Function 74

14.2 Detecting the Number of Values 75

 The HASONEVALUE Function 75
 Using COUNTROWS to Count VALUES 76

14.3 Using VALUES to Modify Filter
Context

77

 The Obvious Way doesn’t Work 77
 Using the VALUES Function to Solve the

Problem
77

14.4 Parameter Tables 78

14.5 Dynamic Titles using ISFILTERED 79

 Dynamic Titles for Single-Value Filters 79
 Dynamic Titles for Multi-Value Filters 80

15 CALENDAR TABLES Page

15.1 What are Calendar Tables? 81

 Requirements for a Calendar Table 81
 Why you Need a Calendar Table 81

15.2 Creating a Calendar 82

 Step 1 – Getting the Calendar Data 82
 Step 2 – Loading and Linking to the

Calendar Table
83

 Step 3 – Mark your Table as a Date
Table

83

 Step 4 – Setting the Year as Text 84
 Step 5 - Setting a Sort Month 84

15.3 Date Granularity 85

15.4 Special Days 86

TABLE OF CONTENTS (3 of 4)

© Copyright 2023 Page 4

16 MULTIPLE DATE TABLES Page

16.1 The Problem, and Two Solutions 87

 Repeat the Table or the Relationship? 87

16.2 Solution One: Duplicate the Calendar
Table

88

 Step 1 - Importing and Linking to the
Calendar Tables

88

 Step 2 – Renaming Tables and Fields 89
 Step 3 – Using your Multiple Calendars 89

16.3 Solution Two: Duplicate the
Relationship

90

 Creating the Duplicate Relationships 90
 Interlude - The CALCULATETABLE

Function
91

 The USERELATIONSHIP Function 91
 Our Measures 92

16.4 CROSSFILTER Function 93

 One Solution – Change the Relationships
Permanently

93

 A Better Solution – Use DAX to
Temporarily Cross-Filter

94

 Multiple Cross-Filtering 94

17 HOW TIME INTELLIGENCE

FUNCTIONS WORK
Page

17.1 Our Example 95

17.2 Filter Context Reminder 96

17.3 Year-to-Date using CALCULATE 97

17.4 Year-to-Date using Time-Intelligence
Functions

98

 The DATESYTD Function 98
 The TOTALYTD Function 98

18 DAX DATE FUNCTIONS Page

18.1 Contents of the Chapter 99

18.2 Period to Date 100

 Using DATESYTD, DATESQTD and
DATESMTD

100

 Using TOTALYTD, TOTALQTD and
TOTALMTD

100

18.3 Changing the Financial Year End 101

 Functions with a Year End Date
Argument

101

 Displaying Data for Different Financial
Year Ends

102

18.4 Referencing Previous Periods 103

 The SAMEPERIODLASTYEAR Function 103
 The DATEADD Function 103

18.5 Parallel Periods 104

18.6 Moving Averages 105

 Definition of a Moving Average 105
 Moving Average using DATESINPERIOD

and LASTDATE
106

 Moving Average using
DATESBETWEEN, NEXTDATE and
LASTDATE

106

18.7 Semi-Additive Measures 107

 Useful Semi-Additive Functions 107
 Using the FIRSTDATE and LASTDATE

Functions
107

 Using FIRSTNONBLANK and
LASTNONBLANK

108

 Detecting Relationships in
FIRSTNONBLANK / LASTNONBLANK

108

19 RANKING Page

19.1 The RANKX Function 109

 Syntax of the Rank Function 109
 Intellisense for the RANKX Function 109

19.2 RANKX for Calculated Columns 110

19.3 Ranking Measures (Existing Columns) 111

 The Most Common Problem – Omitting
ALL

111

 The Solution using ALL 111

19.4 Ranking using Aggregate Calculations 112

 RANKX is an Iterator Function 112

19.5 Ranking with Context 113

 Suppressing Totals 113
 Ranking over Selected Items 113

TABLE OF CONTENTS (4 of 4)

© Copyright 2023 Page 5

20 THE EARLIER FUNCTION Page

20.1 Case Study of the EARLIER Function 114

 Our Example 114
 An Outline of the EARLIER Function 114
 Row Context within Filter Context 115
 The Final Formula 116

20.2 Another Example – Running Totals 117

20.3 Using Variables instead of the
EARLIER Function

118

 Ranking Sales using Variables 118
 Running Totals using Variables 118

21 BANDING Page

21.1 What is Banding? 119

 Creating and Loading a Banding Table 119

21.2 Creating a Banding Formula 120

21.3 Sorting the Bands 121

22 PARENT-CHILD HIERARCHIES Page

22.1 What is a Parent-Child Hierarchy? 122

22.2 Creating a Parent-Child Hierarchy 123

 Step 1 – Create a List of Parent Ids (the
PATH Function)

123

 Step 2 – Working out the Path Depth (the
PATHLENGTH Function)

123

 Step 3 – Create a Measure Showing the
Number of Levels

123

 Step 4 - Finding Managers at Each Level
(PATHITEM and LOOKUPVALUE)

124

 Step 5 – Creating a Hierarchy 125
 Step 6 – Creating your Visual 125

Chapter 1 - Getting Started

© Copyright 2023 Page 6

CHAPTER 1 - GETTING STARTED

1.1 Introducing DAX

The DAX language (standing loosely for Data Analysis eXpressions) allows you to create calculated
columns, measures and queries (an example of each is shown in this section).

Where is DAX used?

You can write DAX within the following programs:

Program Notes

Power BI Power BI is a standalone application which allows you to create business
intelligence reports, and publish them to a website or server.

PowerPivot PowerPivot is an add-in within Excel which allows you to combine data from
multiple data sources, and present this in a pivot table.

SQL Server Analysis
Services (Tabular)

SSAS Tabular allows you to combine data from lots of different data sources,
apply security to it to control who sees what and then allow employees of your
organisation to share the resulting data model.

How DAX is Used 1 - Calculated Columns

A calculated column is like a formula in Excel:

As we will see in this manual, a calculated column is evaluated for each row of a table; DAX creates
a row context for each separate calculation.

DAX initially looks similar to Excel, but you will quickly realise that it is actually very
different!

Wise
Owl’s
Hint

This DAX calculated column
gives the sales value for each
row of a purchases table, by
multiplying the quantity of
items bought by the price paid.

Chapter 1 - Getting Started

© Copyright 2023 Page 7

How DAX is Used 2 – Measures

Much of this courseware will be devoted to
creating measures like this one, to calculate
the value of sales for any region, year or
other constraint:

How DAX is Used 3 – Queries

As well as for creating calculated columns and measures, you can also use DAX to create queries
to get data out of a Power BI, PowerPivot or SSAS Tabular data model:

Measures use the same language, but are
usually more complicated (and always involve
some aggregation).

This measure is showing that total sales for the
East Anglia region and Air environment are
£1,268.71. As we will see, each measure is
calculated for a particular combination of
constraints called the filter context.

The DAX query language is similar to SQL, but whereas SQL is used to
get data out of a relational database, DAX is used to get data out of a data
model.

This query lists out all of the regions in a data model, alphabetically by
region name.

Chapter 1 - Getting Started

© Copyright 2023 Page 8

1.2 The Construct-a-Creature Database

This courseware uses data from the (fictitious) Wise Owl subsidiary Construct-a-Creature (a retail
chain loosely modelled on Build-a-Bear, but with a wider range of animals available for purchase).

The Database Tables and Relationships

Here are the tables in the Construct-a-Creature (CAC) database:

There are four geographical tables to do with where purchases took place, giving the shopping
centre, type of shopping centre, town and region.

The purchases table specifies how many
of each product were bought in each
location in each transaction.

There are also four tables to do with the biological classification
of each animal (for example, a frog is an amphibian which lives in
a fresh water habitat in a watery environment).

Chapter 1 - Getting Started

© Copyright 2023 Page 9

1.3 Column Storage

To understand how DAX works in Power BI, and how to tweak it, it’s vital to understand how the
underlying engine (called either VertiPaq or xVelocity, depending on what you read) stores data.

Row versus Column Storage

Most databases (such as SQL Server) use a
row-based storage algorithm:

Power BI models, by contrast,
store data by column:

Data Compression

Duplicate column values are only ever stored once. Thus the FamilyId and Legs columns above
might be stored something like this:

Column Dictionary Values

FamilyId 1,2,3,4,5,6 0,2,3,4,4,4,2,4,2,1,4,5,4,2,0,3,4,4,4

Legs 0,2,4,6 0,1,2,1,2,2,1,2,1,0,2,3,2,1,0,2,2,2,2

In Power BI columns are stored separately, which
makes any calculation summing or otherwise
aggregating this column run much more quickly.

Typically each row in a table is stored as a record, and
is accessed by its primary key (unique identifier).

This shows that the lower the cardinality of a column (ie the smaller the number of
distinct values there are, and hence the more duplication there is), the more
efficiently the data will be stored.

Wise
Owl’s
Hint

Chapter 1 - Getting Started

© Copyright 2023 Page 10

Implications for Loading Data

What column storage implies is that you should avoid loading columns with high cardinality (that is,
with very little repeated data) unless you need them:

You should avoid loading the PurchaseId column.
It isn’t used to link to any other table, and it has
the highest possible cardinality (each number is
unique) so will take up a lot of memory.

The other column to avoid loading, since each time of
day is stored as a separate number internally (unless,
of course, you want to analyse purchases by the time of
day when they occurred).

Note that for the example above you have to import the ProductId and CentreId
columns because they are used to link to other tables.

Wise
Owl’s
Hint

Chapter 2 - Writing DAX

© Copyright 2023 Page 11

CHAPTER 2 - WRITING DAX

2.1 Calculated Columns

The simplest way to write DAX is as a
calculated column:

Referring to Columns/Fields

The easiest way to create a formula in DAX is to use the keyboard:

Right-click on a column and choose to insert a new
one as here, then start typing into the formula bar
which appears:

a) After typing a name for your new column, type the opening square
bracket symbol [.

b) Type in the first letter of the field
you want to use (here q).

c) Either double-click on the field
name to insert it, or press TAB.

d) Continue in this way to build up the formula you want to create.

e) When you press ENTER to
create your formula, DAX will
calculate it and show the
results for every row in the
table.

Chapter 2 - Writing DAX

© Copyright 2023 Page 12

Referring to Tables

If you want to refer to a table, the easiest way to do it is to type in the ' apostrophe character:

Fully Qualified References

You can always refer to a column using its full reference:

However, you can often miss out the table name where it is unambiguous from the context. So both
of these calculated columns will work:

When an expression
calls for a table …

… type an apostrophe
symbol to bring up a list
of just the table names.

Although the method above makes it easy to insert a table name into a formula, the
apostrophe characters are optional, and most people miss them out. The exception
to this is when your table name is also a reserved word (for example, Calendar is a
table name which you would have to type as ‘Calendar’).

Wise
Owl’s
Hint

=TableName[ColumnName]

Here we haven’t specified the table name, so
DAX assumes that it is the current one.

Here, by contrast, we have included the table
name, even though it wasn’t necessary.

It’s probably best practice always to fully qualify column references in DAX (although
the author confesses to frequently taking the lazy way out and omitting them where
they’re not needed).

Wise
Owl’s
Hint

Chapter 2 - Writing DAX

© Copyright 2023 Page 13

2.2 Writing DAX

The more you get into DAX, the longer and more complicated your formulae will become – and the
more important it will be to format and comment them properly!

Laying out your Formulae

DAX formulae can quickly become quite long, and hard to read. You can make formulae easier to
interpret by indenting arguments to functions:

Using Multiple Lines

You can use this drop down arrow to give yourself more space to work in:

You can also use the following keys to add carriage returns into a formula:

Key What it does

 Shift + ↩ Add a new line, and also an indentation level if appropriate.

 Alt + ↩ Add a new line, but don’t indent it.

Size = IF(
[SquareMetres] > 10000,
"Large",
"Small"

)

Using multiple lines and indenting code
together make formulae easier to read.

When you copy DAX formulae from Power BI you lose any colours. Because of this
all of the formulae in this courseware are copied from DAX Studio, a separate
standalone DAX editor. As a result the colours shown will have slightly different
shading to those you’ll see in Power BI.

Wise
Owl’s
Hint

Click on this drop arrow to give yourself
more room for typing.

Too much room,
sometimes! Click
again to collapse
the space.

Irritatingly, the one key which doesn’t work is just pressing Enter. Instead, this
makes Power BI create your formula, even if you haven’t finished it. You’ll then have
to sort out the brackets Power BI has thoughtfully added at the end of the formula to
make your parentheses balance out!

Wise
Owl’s
Hint

Chapter 2 - Writing DAX

© Copyright 2023 Page 14

Pressing the TAB Key

When you’ve typed in a function or field, the best key that you can press is Tab . This is true even
if you’ve typed in the whole name of a function:

Comments

You can’t insert comments at the start of DAX formulae:

You can, however, insert them anywhere else, using one of 3 different syntaxes:

This formula won’t work,
because even though
the comment syntax is
valid DAX will take the
comment as the start of
the formula, and name
the column accordingly!

Size = IF(
// condition (bigger than
// 20,000 square metres)
[SquareMetres] > 20000,

// return LARGE if a centre is big
"Large",

// otherwise return SMALL
"Small"

)

Size = IF(
[SquareMetres] > 20000,
"Large",
"Small"

)
// this formula categories
// shopping centres by size

-- you can also write comments
-- like this

/*
or even with long comments
like this
*/

You can add comments at the end of formulae using one of these
three syntaxes (although until you learn DAX variables it’s not
obvious why you’d want to do this).

You can also (more
usefully) put comments
between arguments –
any line beginning with //
or - - will be ignored.

Here we’ve typed in the full function
name IF, but it’s in lower case and
we need a bracket to follow it.

Pressing the TAB key will solve
both problems with one keystroke!

Chapter 2 - Writing DAX

© Copyright 2023 Page 15

2.3 DAX Syntax

This section explains the rules you have to follow when creating DAX formulae.

Functions and Arguments

When you type any DAX function, Intellisense will tell you the arguments you need to specify. Here’s
an example:

Here are the arguments to this function (the bits of information that you need to specify):

Argument name Status What it should contain

LogicalTest Compulsory A test to perform to see if something is true or not

ResultIfTrue Compulsory What to return if the test returns true

ResultIfFalse Optional What to return if the test returns false

A simple DAX function,
returning different values if
something is true or false.

You can tell whether an argument is compulsory or optional by seeing whether it is
enclosed in square brackets [like this].

Wise
Owl’s
Hint

Chapter 2 - Writing DAX

© Copyright 2023 Page 16

Mathematical Operators

You can use the following standard mathematical symbols in DAX expressions:

Symbol What it means Example

 + / - Addition / subtraction = 3 + 5 – 2 would return 6

 * / / Multiplication / division = 2 * 6 / 3 would return 4

 ^ Raising to the power of = 2 ^ 3 would return 8

Standard rules of arithmetic (BODMAS) apply: so 2 + 3 * 5 would return 17, since the multiplication
would take precedence over the addition.

Concatenating Text

There are two ways to join text together. You can either use the & symbol:

Or alternatively, the CONCATENATE function (although this doesn’t work well when you have
more than two things that you want to join together):

This formula would join together the first name
and last name fields, with a space in between.

Unlike in Excel, to join more than two
things together you have to repeat the
function name, making for a messy
formula.

Division and multiplication take equal precedence, and are read from left to right. So
15 / 3 * 2 would return 10, not 2.5.

Wise
Owl’s
Hint

 Training | Internet | Intranet | Database systems

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

What we do!

Basic

training
Advanced
training

Systems /
consultancy

O
ff

ic
e

 Microsoft Excel

 VBA macros

 Office Scripts

 Microsoft Access

B
u

s
in

e
s
s

I
n

te
ll
ig

e
n

c
e

 Power BI

 Power Apps

 Power Automate / PAD

S
Q

L
 S

e
r
v
e
r

 SQL

 Reporting Services

 Report Builder

 Integration Services

 Analysis Services

C
o

d
in

g

 Visual C# programming

 VB programming

 DAX

 Python

mailto:sales@wiseowl.co.uk

 Training | Internet | Intranet | Database systems

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

