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CHAPTER 1 - GETTING STARTED

1.1 Introducing DAX

The DAX language (standing loosely for Data Analysis eXpressions) allows you to create calculated 
columns, measures and queries (an example of each is shown in this section).

Where is DAX used?

You can write DAX within the following programs:

Program Notes

Power BI Power BI is a standalone application which allows you to create business 
intelligence reports, and publish them to a website or server.

PowerPivot PowerPivot is an add-in within Excel which allows you to combine data from 
multiple data sources, and present this in a pivot table.

SQL Server Analysis 
Services (Tabular)

SSAS Tabular allows you to combine data from lots of different data sources, 
apply security to it to control who sees what and then allow employees of your 
organisation to share the resulting data model.

How DAX is Used 1 - Calculated Columns

A calculated column is like a formula in Excel:

 

As we will see in this manual, a calculated column is evaluated for each row of a table; DAX creates 
a row context for each separate calculation.

DAX initially looks similar to Excel, but you will quickly realise that it is actually very 
different!

Wise 
Owl’s 
Hint

This DAX calculated column 
gives the sales value for each 
row of a purchases table, by 
multiplying the quantity of 
items bought by the price paid.
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How DAX is Used 2 – Measures

Much of this courseware will be devoted to 
creating measures like this one, to calculate 
the value of sales for any region, year or 
other constraint:

How DAX is Used 3 – Queries

As well as for creating calculated columns and measures, you can also use DAX to create queries 
to get data out of a Power BI, PowerPivot or SSAS Tabular data model:

  

Measures use the same language, but are 
usually more complicated (and always involve 
some aggregation).

This measure is showing that total sales for the 
East Anglia region and Air environment are 
£1,268.71.  As we will see, each measure is 
calculated for a particular combination of 
constraints called the filter context.

The DAX query language is similar to SQL, but whereas SQL is used to 
get data out of a relational database, DAX is used to get data out of a data 
model.

This query lists out all of the regions in a data model, alphabetically by 
region name.
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1.2 The Construct-a-Creature Database

This courseware uses data from the (fictitious) Wise Owl subsidiary Construct-a-Creature (a retail 
chain loosely modelled on Build-a-Bear, but with a wider range of animals available for purchase).

The Database Tables and Relationships

Here are the tables in the Construct-a-Creature (CAC) database:

 

There are four geographical tables to do with where purchases took place, giving the shopping 
centre, type of shopping centre, town and region.

The purchases table specifies how many 
of each product were bought in each 
location in each transaction.

There are also four tables to do with the biological classification 
of each animal (for example, a frog is an amphibian which lives in 
a fresh water habitat in a watery environment).
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1.3 Column Storage

To understand how DAX works in Power BI, and how to tweak it, it’s vital to understand how the 
underlying engine (called either VertiPaq or xVelocity, depending on what you read) stores data.

Row versus Column Storage 

Most databases (such as SQL Server) use a 
row-based storage algorithm: 

Power BI  models, by contrast, 
store data by column:

Data Compression

Duplicate column values are only ever stored once.  Thus the FamilyId and Legs columns above 
might be stored something like this:

Column Dictionary Values

FamilyId 1,2,3,4,5,6 0,2,3,4,4,4,2,4,2,1,4,5,4,2,0,3,4,4,4

Legs 0,2,4,6 0,1,2,1,2,2,1,2,1,0,2,3,2,1,0,2,2,2,2

In Power BI columns are stored separately, which 
makes any calculation summing or otherwise 
aggregating this column run much more quickly.

Typically each row in a table is stored as a record, and 
is accessed by its primary key (unique identifier).

This shows that the lower the cardinality of a column (ie the smaller the number of 
distinct values there are, and hence the more duplication there is), the more 
efficiently the data will be stored.

Wise 
Owl’s 
Hint
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Implications for Loading Data

What column storage implies is that you should avoid loading columns with high cardinality (that is, 
with very little repeated data) unless you need them:

You should avoid loading the PurchaseId column.  
It isn’t used to link to any other table, and it has 
the highest possible cardinality (each number is 
unique) so will take up a lot of memory.

The other column to avoid loading, since each time of 
day is stored as a separate number internally (unless, 
of course, you want to analyse purchases by the time of 
day when they occurred).

Note that for the example above you have to import the ProductId and CentreId 
columns because they are used to link to other tables.

Wise 
Owl’s 
Hint
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CHAPTER 2 - WRITING DAX

2.1 Calculated Columns

The simplest way to write DAX is as a 
calculated column:

Referring to Columns/Fields

The easiest way to create a formula in DAX is to use the keyboard:

Right-click on a column and choose to insert a new 
one as here, then start typing into the formula bar 
which appears:

a) After typing a name for your new column, type the opening square 
bracket symbol [.

b) Type in the first letter of the field 
you want to use (here q).

c) Either double-click on the field 
name to insert it, or press TAB.

d) Continue in this way to build up the formula you want to create.

e) When you press ENTER to 
create your formula, DAX will 
calculate it and show the 
results for every row in the 
table.



Chapter 2 - Writing DAX

© Copyright 2023  Page 12

Referring to Tables

If you want to refer to a table, the easiest way to do it is to type in the  '  apostrophe character:

Fully Qualified References

You can always refer to a column using its full reference:

However, you can often miss out the table name where it is unambiguous from the context.  So both 
of these calculated columns will work:

When an expression 
calls for a table …

… type an apostrophe 
symbol to bring up a list 
of just the table names.

Although the method above makes it easy to insert a table name into a formula, the 
apostrophe characters are optional, and most people miss them out.  The exception 
to this is when your table name is also a reserved word (for example, Calendar is a 
table name which you would have to type as ‘Calendar’).

Wise 
Owl’s 
Hint

=TableName[ColumnName]

Here we haven’t specified the table name, so 
DAX assumes that it is the current one.

Here, by contrast, we have included the table 
name, even though it wasn’t necessary.

It’s probably best practice always to fully qualify column references in DAX (although 
the author confesses to frequently taking the lazy way out and omitting them where 
they’re not needed).

Wise 
Owl’s 
Hint
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2.2 Writing DAX

The more you get into DAX, the longer and more complicated your formulae will become – and the 
more important it will be to format and comment them properly!  

Laying out your Formulae

DAX formulae can quickly become quite long, and hard to read.  You can make formulae easier to 
interpret by indenting arguments to functions:

Using Multiple Lines

You can use this drop down arrow to give yourself more space to work in:

You can also use the following keys to add carriage returns into a formula:

Key What it does

 Shift  +  ↩  Add a new line, and also an indentation level if appropriate.

 Alt   +  ↩   Add a new line, but don’t indent it.

Size = IF(
[SquareMetres] > 10000,
"Large",
"Small"

)

Using multiple lines and indenting code 
together make formulae easier to read.  

When you copy DAX formulae from Power BI you lose any colours.  Because of this 
all of the formulae in this courseware are copied from DAX Studio, a separate 
standalone DAX editor.  As a result the colours shown will have slightly different 
shading to those you’ll see in Power BI.

Wise 
Owl’s 
Hint

Click on this drop arrow to give yourself 
more room for typing.

Too much room, 
sometimes!  Click 
again to collapse 
the space.

Irritatingly, the one key which doesn’t work is just pressing Enter.  Instead, this 
makes Power BI create your formula, even if you haven’t finished it.  You’ll then have 
to sort out the brackets Power BI has thoughtfully added at the end of the formula to 
make your parentheses balance out!

Wise 
Owl’s 
Hint
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Pressing the TAB Key

When you’ve typed in a function or field, the best key that you can press is  Tab .  This is true even 
if you’ve typed in the whole name of a function:

Comments

You can’t insert comments at the start of DAX formulae:

You can, however, insert them anywhere else, using one of 3 different syntaxes:

This formula won’t work, 
because even though 
the comment syntax is 
valid DAX will take the 
comment as the start of 
the formula, and name 
the column accordingly!

Size = IF(
// condition (bigger than 
// 20,000 square metres)
[SquareMetres] > 20000,

// return LARGE if a centre is big
"Large",

// otherwise return SMALL
"Small"

)

Size = IF(
[SquareMetres] > 20000,
"Large",
"Small"

)
// this formula categories
// shopping centres by size

-- you can also write comments
-- like this

/*
or even with long comments
like this
*/

You can add comments at the end of formulae using one of these 
three syntaxes (although until you learn DAX variables it’s not 
obvious why you’d want to do this).

You can also (more 
usefully) put comments 
between arguments – 
any line beginning with // 
or - - will be ignored.

Here we’ve typed in the full function 
name IF, but it’s in lower case and 
we need a bracket to follow it.

Pressing the TAB key will solve 
both problems with one keystroke!
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2.3 DAX Syntax

This section explains the rules you have to follow when creating DAX formulae.

Functions and Arguments

When you type any DAX function, Intellisense will tell you the arguments you need to specify.  Here’s 
an example:

  

Here are the arguments to this function (the bits of information that you need to specify):

Argument name Status What it should contain

LogicalTest Compulsory A test to perform to see if something is true or not

ResultIfTrue Compulsory What to return if the test returns true

ResultIfFalse Optional What to return if the test returns false

A simple DAX function, 
returning different values if 
something is true or false.

You can tell whether an argument is compulsory or optional by seeing whether it is 
enclosed in square brackets [like this].

Wise 
Owl’s 
Hint
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Mathematical Operators

You can use the following standard mathematical symbols in DAX expressions:

Symbol What it means Example

 +   /   -    Addition / subtraction = 3 + 5 – 2 would return 6

 *   /   /  Multiplication / division = 2 * 6 / 3 would return 4

 ^  Raising to the power of = 2 ^ 3 would return 8

Standard rules of arithmetic (BODMAS) apply: so 2 + 3 * 5 would return 17, since the multiplication 
would take precedence over the addition.

Concatenating Text

There are two ways to join text together.  You can either use the  &  symbol:

Or alternatively, the CONCATENATE function (although this doesn’t work well when you have 
more than two things that you want to join together):

This formula would join together the first name 
and last name fields, with a space in between.

Unlike in Excel, to join more than two 
things together you have to repeat the 
function name, making for a messy 
formula.

Division and multiplication take equal precedence, and are read from left to right.  So 
15 / 3 * 2 would return 10, not 2.5.

Wise 
Owl’s 
Hint
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