
VBA Advanced

Sample manual - first two chapters

Manual 1343 - 173 pages –

TABLE OF CONTENTS (1 of 6)

© Copyright 2024 Page 2

1 VBA RECAP Page

1.1 VBA Reference 8

 Creating Procedures 8
 Selecting and Activating Excel Objects 8
 Selecting an Excel Range Relatively 9
 Messages and Inputs 9
 Declaring Variables 10
 Conditional Statements 11
 Looping 12
 Exiting from a Loop 12

2 OBJECT ORIENTED

PROGRAMMING
Page

2.1 Object Oriented Programming 13

 The Building Blocks of an Object Oriented
Language

13

2.2 Objects 14

 Referring to Objects by Name 14
 Referring to Objects by Index Number 14
 Qualifying References to Objects 15
 Using Keywords to Reference Objects 15
 Using Object Codenames 16
 Using Object Variables 16

2.3 Collections 17

 Referring to Collections 17
 Adding Items to a Collection 18
 Counting Items in a Collection 18

2.4 Methods 19

 Applying Methods to Objects 19
 Passing Arguments to Methods 19
 Returning Values and References from

Methods
20

 When to use Parentheses 20

2.5 Properties 21

 Writing to a Property 21
 Read-Only Properties 21
 Property Data Types 21
 Reading from a Property 22
 Properties and Parameters 22

2.6 Getting Help in VBA 23

 The Object Browser 23
 Context Sensitive Help 24
 Recording a Macro 24

3 FOR EACH LOOPS Page

3.1 Looping Through Collections 25

 The For Each Loop 25
 A Basic Example 25

3.2 Looping Over Excel Worksheets,
Charts and Sheets

26

 Protecting all Worksheets 26
 Excluding Objects from a Loop 26
 Looping Through Chart Sheets 27
 Looping Through All Sheets 27
 Looping Through Objects on a Sheet 27

3.3 Looping Over the Excel Workbooks
Collection

28

 Processing all Open Workbooks 28

3.4 Looping Over a Collection of Excel
Range Objects

29

 Specifying the Range to Loop Over 29
 Looping Through a Column of Data 29

3.5 Nesting For Each Loops 30

 Looping Over Shapes on All Worksheets 30
 Looping Through Sheets in All Open

Workbooks
30

3.6 Looping Over Collections in Word 31

 Looping Over Documents 31
 Looping Over Paragraphs 31
 Looping Over Sentences, Words and

Characters
32

3.7 Looping Over Collections in
PowerPoint

33

 Looping Over Presentations 33
 Looping Over Slides 33
 Looping Over Objects on a Slide 33

3.8 Looping Over Collections in Access 34

 Looping Over Controls on a Form 34
 Looping Over Access Database Objects 35

3.9 Looping Over Collections in Outlook 36

 Looping Over Inbox Items 36
 Looping Over Email Attachments 36

TABLE OF CONTENTS (2 of 6)

© Copyright 2024 Page 3

4 CONTROLLING OTHER
APPLICATIONS

Page

4.1 Referencing Object Libraries 37

 Setting a Reference to an Object Library 37
 The Default References 38
 References and the Object Browser 38
 Microsoft Office Version Numbers 38

4.2 An Example for Word 39

 Setting a Reference to the Word Object
Library

39

 Declaring a Variable for Word 39
 Creating a New Instance of Word 40
 Auto-Instancing Variables 40
 Showing and Activating Word 41
 Creating a New Document 41
 Writing and Formatting Text in Word 42
 Copying from Excel to Word 42
 Saving the Document and Closing Word 43
 The Complete Example 43

4.3 An Example for PowerPoint 44

 Setting a Reference to the PowerPoint
Object Library

44

 Opening PowerPoint and Creating a
Presentation

44

 Creating a Title Slide 44
 Copying from Excel to PowerPoint 45
 Moving and Resizing PowerPoint Objects 45
 Saving the Presentation and Closing

PowerPoint
46

 The Complete Example 46

4.4 An Example for Outlook 47

 Setting a Reference to the Outlook Object
Library

47

 The Complete Example 47

4.5 Controlling Applications without
References

48

 The CreateObject Function 48
 Using Object Variables 48
 Converting Constants to Numbers 49
 Getting a Reference to a Running

Application
50

 Testing the Version of an Application 51

4.6 Referencing Other VBA Projects 52

 Setting a Reference to a VBA Project 52
 Creating Excel Add-Ins 53
 Loading Excel Add-Ins 53

5 CONNECTING TO DATABASES Page

5.1 ActiveX Data Objects 54

 A Brief Version History 54
 Referencing the ADO Library 54

5.2 Connecting to an External Database 55

 Setting the Connection String 55

5.3 Creating Connections in Access 56

 Referencing the CurrentProject’s
Connection

56

5.4 ADO Recordsets 57

 Creating a Recordset 57
 Setting the Source of the Recordset 57
 Setting the Lock Type 58
 Setting the Cursor Type 58
 Opening and Closing a Recordset 59
 Copying Data into Excel 59

5.5 Moving in a Recordset 60

 Moving the Cursor 60
 Reaching the End of a Recordset 60
 Looping Over a Recordset 61
 Referring to Fields 61

5.6 Finding and Filtering Records 62

 The Find Method 62
 Repeated Finds 62
 Applying a Filter 63
 Removing a Filter 63
 Adding Criteria to a SQL Select Statement 64
 Creating Dynamic SQL Statements 64

5.7 Modifying Data 65

 Adding New Records 65
 Editing Existing Records 65
 Deleting Records 65

5.8 ADO Commands 66

 Creating a New Command Object 66
 Setting the Command Text 66
 Executing the Command 66

5.9 Using DAO 67

 Referencing the Correct Object Library 67
 Opening a Database 67
 Creating a Recordset 67

TABLE OF CONTENTS (3 of 6)

© Copyright 2024 Page 4

6 FILES AND FOLDERS Page

6.1 Working with Files and Folders 68

 The Scripting Runtime Library 68
 Creating a FileSystemObject 68

6.2 Basic File and Folder Techniques 69

 Testing if a File or Folder Exists 69
 Creating a Folder 69
 Copying and Moving Files and Folders 69
 Deleting Files and Folders 70
 Renaming Files and Folders 70
 Getting a Reference to a File or Folder 70

6.3 Looping Over Files and Folders 71

 Looping Over Files 71
 Looping Over Folders 71
 Recursively Looping Over Subfolders 72

6.4 Working with Text Files 73

 Creating and Writing to a Text File 73
 Opening a Text File 73
 Reading from a Text File 74

6.5 Using VBA’s FileSystem Methods 75

 Creating Folders 75
 Deleting Files and Folders 75
 Copying Files 75
 Renaming Files 75

7 FILE DIALOG BOXES Page

7.1 Working with File Dialogs 76

 Types of File Dialog Box 76
 Displaying a File Dialog Box 77
 Performing the Default Action 77

7.2 Customising File Dialogs 78

 Changing the Title and Button Name 78
 Setting the Initial Location 78
 Allowing Multiple Selections 79
 Creating File Filters 79

7.3 Picking Files and Folders 80

 Returning a File or Folder Path 80
 Testing Which Button was Clicked 80
 Dealing with Multiple Selections 81
 Using Multiple File Dialogs 81

8 CLASS MODULES Page

8.1 What are Class Modules? 82

 Why Create Classes? 82
 Important Terminology 83
 Debugging in Class Modules 83

8.2 Designing a Class 84

 Our Example Film Class 84

8.3 Creating a Class 85

 Inserting a Class Module 85
 Renaming a Class Module 85
 Creating a New Instance of a Class 85

8.4 Creating Basic Properties 86

 Basic Properties 86
 Disadvantages of Basic Properties 86

8.5 Creating Full Properties 87

 Assigning a Value to a Property 87
 Reading a Value from a Property 88
 Assigning an Object to a Property 88
 Writing Additional Code in Properties 89
 Read-Only Properties 89

8.6 Creating Methods 90

 Writing Methods in a Class Module 90
 Using Class Methods 90

8.7 Class Module Events 91

 Creating Class Module Event Handlers 91
 Triggering Class Events 91

8.8 Sharing Class Modules 92

 Step 1 – Rename the VBA Project 92
 Step 2 – Make the Class Public 92
 Step 3 – Create a Function to Return an

Instance of the Class
92

 Step 4 – Reference the Class Project 93
 Step 5 – Consume the Class 93

TABLE OF CONTENTS (4 of 6)

© Copyright 2024 Page 5

9 COLLECTIONS AND DICTIONARIES Page

9.1 What are Collections? 94

 Custom Collections and Dictionaries 94

9.2 Untyped Collections 95

 Creating a New Collection 95
 Adding Items to a Collection 95
 Adding Custom Classes to a Collection 96
 Referencing Collection Items 96
 Removing Items from a Collection 96
 Looping Over Collections 97

9.3 Typed Collections 98

 The Problem with Untyped Collections 98
 Creating a Collection Class 98
 Populating a Typed Collection 99
 Looping Over a Typed Collection 99
 Referencing Items in a Typed Collection 99

9.4 Dictionaries 100

 Referencing the Scripting Runtime Library 100
 Creating a New Dictionary 100
 Adding Items to a Dictionary 101
 Referring to Dictionary Items 101
 Automatically Creating Keys 102
 Checking if a Key Exists 102
 The Compare Mode 103
 Removing Items from a Dictionary 103
 Replacing Dictionary Values 104
 Replacing Dictionary Objects 104
 Looping Over Dictionaries 105

10 ARRAYS Page

10.1 Overview of Arrays 106

 Viewing the Contents of Arrays 106

10.2 Declaring Arrays 107

 Setting the Dimensions of an Array 107
 Changing the Base of Arrays 107
 Declaring Multi-Dimensional Arrays 107

10.3 Populating Arrays 108

 Assigning Values to an Array 108
 Assigning Objects to Arrays 108

10.4 Reading from Arrays 109

 Referring to a Specific Element 109
 Looping Over an Array 109
 The Bounds of an Array 110
 Using For Each Loops 110

10.5 Dynamic Arrays 111

 Declaring an Empty Array 111
 Re-Dimensioning an Array 111
 Preserving the Contents of an Array 111

10.6 Arrays in Excel 112

 Assigning a Range to an Array 112
 Calculating in an Array 112
 Assigning an Array to a Range 112

TABLE OF CONTENTS (5 of 6)

© Copyright 2024 Page 6

11 MODULAR CODE, PARAMETERS
AND FUNCTIONS

Page

11.1 Modular Code 113

 Our Example 113

11.2 Breaking a Procedure into Parts 114

 Creating Module Level Variables 114
 Getting Input from the User 114
 Retrieving the Related Values 115
 Building and Showing a Message 115
 Putting it all Together 115

11.3 Procedures and Parameters 116

 Our Example 116
 Defining Parameters 116
 Calling a Procedure which has

Parameters
117

 Optional Parameters 117
 Assigning Default Values to Parameters 118
 Testing for Missing Arguments 118
 ParamArrays 118

11.4 Passing Arguments ByRef and ByVal 119

 Passing Arguments by Reference 119
 Passing Arguments by Value 120
 Passing Arguments in Parentheses 120

11.5 Functions vs. Subroutines 121

 Returning a Value from a Function 121
 Returning a Reference from a Function 121
 Calling a Function 122
 Using Functions in a Worksheet 122
 Defining Function Parameters 122

11.6 Debugging Modular Code 123

 Viewing the Definition of a Procedure 123
 Stepping Over a Procedure Call 123

12 CONSTANTS AND ENUMERATIONS Page

12.1 Working with Constants 124

 Declaring Constants 124
 Referencing Constants 124

12.2 Enumerations 125

 Declaring Enumerations 125
 Referencing Enumerations 125
 Using Enumerations as Data Types 126
 Converting an Enumeration to Text 126
 Enumerations for Colours 127

13 RECURSIVE PROGRAMMING Page

13.1 Recursive Procedures 128

 Why Use Recursive Procedures? 128
 Viewing the Call Stack 128

13.2 Organisational Hierarchies 129

 Creating the Base Organisation Chart 129
 Recursively Adding Nodes 130

14 DEBUGGING Page

14.1 Debugging Code 131

 Errors vs. Bugs 131
 The Debug Toolbar 131

14.2 Running Code 132

 Running a Procedure from Start to End 132
 Running a Procedure in Break Mode 132
 Stepping Through Code 133
 Changing the Next Instruction 133
 Editing Code in Break Mode 133

14.3 Breakpoints 134

 Setting and Removing Breakpoints 134
 The Stop Statement 134
 Breaking Conditionally 134

14.4 The Immediate Window 135

 Executing Instructions in the Immediate
Window

135

 Asking Questions in the Immediate
Window

135

 Printing to the Immediate Window 135

14.5 The Locals Window 136

 Observing Variables 136

14.6 The Watch Window 137

 Adding an Expression to Watch 137
 Types of Watch 137
 Adding a Quick Watch 138
 Editing and Removing Watches 138

14.7 The Call Stack 139

 Displaying the Call Stack 139
 Using the Call Stack 139

14.8 Useful Keyboard Shortcuts 140

TABLE OF CONTENTS (6 of 6)

© Copyright 2024 Page 7

15 HANDLING ERRORS Page

15.1 Run-Time Errors in VBA 141

15.2 Error Handling in VBA 142

 Identifying Potential Run-Time Errors 142
 The On Error Statement 142

15.3 Using the On Error Statement 143

 Ignoring Run-Time Errors 143
 Disabling an Error Handler 143

15.4 Creating a Custom Error Handler 144

 Redirecting Your Code 144
 Writing the Error-Handling Section 144
 Exiting a Procedure before the Error-

Handling Code
145

 The Complete Example 145
 Creating Multiple Error Handlers 146

15.5 Resuming After an Error 147

 Resuming at the Original Line 147
 Resuming at the Next Line 147
 Resuming at a Specified Line 148
 Why use Resume and Not GoTo? 148

15.6 The Err Object 149

 Getting the Error Number and
Description

149

 A Catch-All Approach to Error-Handling 149

15.7 Raising Custom Errors 150

 Raising a Custom Error 151

15.8 Errors in Multiple Procedures 152

 Creating a Top-Level Error Handler 152

16 SHAPES Page

16.1 Introduction to Shapes 153

 The Shapes Collection 153

16.2 Referring to Shapes 154

 Names and Index Numbers 154
 Referring to a Range of Shapes 154
 Referring to Selected Shapes 154
 Referring to Newly Added Shapes 155
 Looping Over the Shapes Collection 155

16.3 Shape Size and Position 156

 Changing the Size and Position 156
 Sizing and Positioning Relative to Other

Objects
156

16.4 Adding Shapes 157

 Adding a Basic AutoShape 157
 Labels and Textboxes 157
 WordArt 158
 Pictures 158
 Form Controls 159

16.5 Formatting Shapes 160

 Changing Shape Colours 160
 Colour Gradients 161
 Other Formatting Options 162
 Setting Default Shape Formats 163
 Copying Formats between Shapes 163
 Using Shape Styles 163

16.6 Shape Adjustments 164

 Referring to Adjustments 164
 Adjusting Adjustments 164

16.7 Adding Text to AutoShapes 165

 The TextFrame and TextFrame2 Objects 165
 Adding Text to a Shape 165

16.8 Formatting Text in a Shape 166

 Basic Font Formatting 166
 Changing the Colour of Text 166
 Formatting Part of the Text 167
 Aligning Text in a Shape 167
 Changing Text Orientation 167

16.9 Connectors and Lines 168

 Drawing Straight Lines 168
 Adding Multi-Point Lines and Curves 168
 Drawing Freeform Lines 169
 Creating Enclosed Shapes 169
 Connectors 170

Chapter 1 - VBA Recap

© Copyright 2024 Page 8

CHAPTER 1 - VBA RECAP

1.1 VBA Reference

This chapter provides you with a quick reference to some of the common bits of VBA that you’re
hopefully already familiar with.

Creating Procedures

The table below shows how to define the two most common types of procedure in VBA.

How to… Code

Declare a subroutine

Declare a function

Selecting and Activating Excel Objects

This section explains how to go to a workbook, worksheet and range of cells in Excel.

How to… Code

Go to a workbook

Go to a worksheet

Go to a range

Chapter 1 - VBA Recap

© Copyright 2024 Page 9

Selecting an Excel Range Relatively

The techniques in the table below show how to select a range relative to another range in Excel.

How to… Code

Move a number of
rows and columns
away

Go to the end of a
list in one
direction

Select from one
cell to the end of
the list

Messages and Inputs

The table below shows how to display messages and ask for user input.

How to… Code Result

Show a
message

Ask a yes or
no question

Ask for a
string

Ask for a
number in
Excel

Chapter 1 - VBA Recap

© Copyright 2024 Page 10

Declaring Variables

This section shows how to declare and assign values to variables.

How to… Code

Force explicit variable declaration

Declare data type variables

Assign values to data type variables

Declare object variables

Set a reference in an object variable

Chapter 1 - VBA Recap

© Copyright 2024 Page 11

Conditional Statements

The table below shows a variety of methods for testing conditions and performing different actions
based on the result.

How to… Code

Write a single-line If

Write a Block If

Include an Else clause

Use ElseIf statements

Write a Select Case statement

Chapter 1 - VBA Recap

© Copyright 2024 Page 12

Looping

The table below shows a variety of ways to repeat a set of instructions in a loop:

How to… Code

Loop a number of times

Loop until a condition is met

Loop while a condition is true

Exiting from a Loop

You can exit from a loop prematurely using the Exit statement. You can see how to do this in the
examples shown below:

How to… Code

Exit from a For Next
loop

Exit from a Do Loop

Chapter 2 - Object Oriented Pogramming

© Copyright 2024 Page 13

CHAPTER 2 - OBJECT ORIENTED PROGRAMMING

2.1 Object Oriented Programming

At this point you should be comfortable with writing some common VBA instructions. This chapter
helps you to work out how to do new things by explaining how the language works.

The Building Blocks of an Object Oriented Language

VBA is an example of an object oriented programming language. In plain English, this means that
the language is made up of several characteristic building blocks, as shown in the table below:

Element Description Examples

Object Any single “thing” or item that you can manipulate in VBA. Object is a
deliberately vague term which could represent almost anything in an
application; from physical things that you can interact with, to more
abstract, invisible items. All objects are based on a class, which defines
exactly how the object works.

A cell on a worksheet
A chart on a slide
A column in a chart
A database connection

Collection A collection is itself an object which you can manipulate in VBA. A
collection is also a group of all of the objects of one specific type. Many
VBA objects belong to a collection.

All open workbooks
All shapes on a slide
All data series in a chart

Method An action that you can apply to an object. Method names are usually
verbs, indicating that you’re doing something to an object. When you write
a subroutine or a function you are creating a custom method in the VBA
project.

Select a worksheet
Copy a cell
Save a presentation

Property An attribute of an object which you can often change to another value.
Some properties are read-only, meaning that you can’t alter them. You
can write your own properties but you tend to only do this in a class
module.

The value of a cell
The width of a shape
The count of charts

Not all VBA instructions consist solely of objects, collections, methods and properties. The table
below shows some of the other elements that aren’t strictly object oriented but are still important:

Element Description Examples

Statement Code that doesn’t necessarily perform an action but can affect what your
program does.

Dim; If; Select Case; Do
Until; On Error

Function An item which returns a value or a reference to an object when you call it. Date; Environ; Format;
Instr; MsgBox

Parameter The name of a piece of information passed to another procedure. Prompt; Buttons; Title

Argument The actual value that you pass to another procedure. This could be any value

Constant A named item which holds an underlying numeric value. vbRed; xlDown; vbNo

Variable A named item which stores a value when your code runs. Almost anything you like

Operator A symbol used in an expression to perform an operation. + - / * ^ &

Chapter 2 - Object Oriented Pogramming

© Copyright 2024 Page 14

2.2 Objects

Objects are the key building block in an object oriented language. Most VBA instructions begin by
referring to the object that you want to manipulate. You can refer to objects in a variety of ways.

Referring to Objects by Name

This is perhaps the most common technique you’ll use to reference an object. Start by referencing
the collection to which the object belongs, as shown in the examples below:

Referring to Objects by Index Number

VBA indexes (assigns a number to) each item in a collection. You can use these index numbers to
refer to objects, which is useful if you can work out which number refers to which object!

You can’t use an index number with the Excel Range object but you can use the
Cells property to achieve a similar result. The example below would select cell
B10.

Cells(2, 10).Select

Wise
Owl’s
Hint

Again, the syntax for using this
technique is consistent across
all of the objects you may want
to reference.

Each collection is indexed in a
different way: documents are
indexed in the order in which
they were opened.

Worksheets, chart sheets and
generic sheets are indexed by
their position from left to right in
the workbook.

Regardless of which class of object you’re referencing, the
basic syntax of the code is the same.

The name of a collection is nearly always the plural of the
type of object that it contains.

The name of an object isn’t case-sensitive when you use it
in this way, but it is good practice to match case.

An Excel Range isn’t technically a collection but you can
use it in the same way to refer to a specific cell or cells.

Chapter 2 - Object Oriented Pogramming

© Copyright 2024 Page 15

Qualifying References to Objects

Some objects belong to collections which have a specific scope. The Excel Shapes collection, for
instance, belongs to a sheet object and you can’t refer to a shape without referencing the sheet.

There are many other examples of objects that can only be referenced in this fashion and you can
see a few of them in the table below:

Object Code

A chart embedded on a sheet Worksheets(“Sheet1”).ChartObjects(“Chart 1”).Chart

A pivot table on a worksheet Worksheets(“Sheet3”).PivotTables(“PivotTable1”)

A data point in a series in a chart Charts(“Chart1”).SeriesCollection(1).Points(1)

A shape on a slide in a presentation Presentations(“Pres1.pptx”).Slides(1).Shapes(1)

You can qualify your references to any object in this way, even when you’re not required to. This
can help you to control exactly which objects your code references. For example:

Object Code

A1 on the active sheet in the active workbook Range(“A1”)

Cell A1 on Sheet1 in Book1 Workbooks(“Book1.xlsm”).Sheets(“Sheet1”).Range(“A1”)

Using Keywords to Reference Objects

You don’t always have to refer to a collection in order to reference an object; some VBA objects
don’t belong to a collection. VBA has many keywords that you can use to refer to objects.

Object Code

The active range of cells in Excel ActiveCell (for a single cell)
Selection (for multiple cells)

The active worksheet or chart ActiveSheet

The active workbook, document or presentation ActiveWorkbook
ActiveDocument
ActivePresentation

The application Application

Sadly, we can’t refer to a shape in the Shapes collection directly because each
sheet has its own separate collection of shape objects. Happily, we can refer
to the sheet object first to get around this problem.

Chapter 2 - Object Oriented Pogramming

© Copyright 2024 Page 16

Using Object Codenames

Some objects have a codename as well as a name. You can usually tell if an object has a
codename because it will be shown in the Project Explorer window.

Using Object Variables

An object variable holds a reference to an object. You can use this type of variable to make your
code easier to write and understand.

Object variables follow the same rules for scope as for data type variables. You
can declare object variables at the top of a module and you can use Private and
Public to modify the variable’s scope.

Wise
Owl’s
Hint

If an object appears in the Project Explorer it’s a good bet that it has a
code name as well as a regular name.

You can use codenames in your code as a quick way to reference the
object you’re attempting to manipulate.

You can change the codename of
an object in the Properties window
to make it more meaningful.

Codenames are a very convenient
way to reference objects.

You can declare an object variable to hold
a reference to any class of object. In the
IntelliSense list this symbol indicates
that the item is a class of object.

Unlike with basic data type variables, you
must use the Set keyword when assigning
a reference to an object variable. Without
it, you’ll see this error:

You can use your object variables to refer
to objects and perform actions with them.

Chapter 2 - Object Oriented Pogramming

© Copyright 2024 Page 17

2.3 Collections

A Collection is a special type of object which contains a group of all of the objects of one particular
type. Many of the most common VBA objects belong to a collection.

Referring to Collections

Referring to a collection object is simply a case of stating the collection’s name. The table below
shows examples of some of the common collections in VBA.

Collection What it contains
Workbooks All of the open Excel workbooks.

Documents All of the open Word documents.

Presentations All of the open PowerPoint presentations.

Forms All of the running forms in an Access database.

Worksheets All of the worksheets in a single workbook.

Charts All of the chart sheets in a single Excel workbook.

ChartObjects All of the embedded charts in a single Excel sheet.

Slides All of the slides in a single PowerPoint presentation.

Sheets All of the worksheets and chart sheets in a single workbook.

Paragraphs All of the paragraphs in a single Word document.

Points All of the data points in a single series in a chart.

You can qualify references to collections just as with other objects

Collection What it contains
Workbooks(“Book1.xlsm”).Worksheets All of the worksheets in Book1.

Worksheets(“Sheet1”).ChartObjects All of the embedded charts in Sheet1.

Worksheets(“Sheet1”).Shapes All of the drawn objects on Sheet1.

Charts(“Chart1”).SeriesCollection All of the series in Chart1.

Sheet1.PivotTables(“PivotTable1”).PivotFields All of the fields in a pivot table on Sheet1.

Documents(“Document1.docx”).Paragraphs All of the paragraphs in Document1.

Presentations(“Pres1.pptx”).Slides(1).Shapes All of the shapes on a slide in Pres1.

Just as with other objects, collections have a variety of methods and properties which you can use
to manipulate the object.

To see the properties and methods of a
collection, type in its name and follow it
with a full stop.

This is a small selection of the methods
and properties that you can apply to the
Workbooks collection.

Chapter 2 - Object Oriented Pogramming

© Copyright 2024 Page 18

Adding Items to a Collection

You can add more items to many collections using the Add method of the collection. Each
collection’s Add method has its own list of parameters.

It’s often useful to store a reference to the new object in a variable when you create it. This makes
it easier to refer back to the object later in a procedure.

Counting Items in a Collection

It’s often useful to find out how many items belong to a collection. You can use the collection’s
Count property to do this.

In a slightly more useful example, this code creates a new worksheet and positions it to the right of
all the existing sheets in the workbook:

When you add a workbook you can optionally specify
the path to a file to act as a template for the new book.

When you add a worksheet you can control where the
new sheet will be inserted, as well as specifying the
quantity of sheets to create.

You can control the size and position of an embedded
chart when you add it to the collection using these four
parameters.

The Workbooks.Add method returns a reference
to the workbook that is created, meaning that we
can use the method to store a reference to the new
workbook in an object variable.

We can use the object variable later in the same procedure when we need to do something with the new workbook.

If there are already five sheets in the workbook, this code is
the same as saying add a new sheet to the right of the 5th.

Chapter 2 - Object Oriented Pogramming

© Copyright 2024 Page 19

2.4 Methods

A Method is an action that you can apply to an object. You can recognise methods by the
distinctive “flying green brick” symbol in the IntelliSense list.

Applying Methods to Objects

Applying a method to an object is relatively straightforward: start by referring to the object, followed
by a full stop and then the name of the method. The table below shows a few basic examples:

Method What it does
Range(“A1”).Select Selects the specified range object.

Worksheets(“Sheet1”).Delete Deletes the specified worksheet object.

Workbooks.Add Creates a new blank workbook.

Columns(“C”).AutoFit Changes the width of the specified column to fit its widest entry.

ActiveDocument.PrintOut Prints the active document.

Presentations(1).Save Saves the first opened presentation in this PowerPoint session.

Passing Arguments to Methods

Many methods have a set of parameters to which you can pass arguments. The tooltip for a
method shows you if there are any required or optional parameters.

It can be useful to name a parameter when you pass an argument to it as this makes it easier to
read your code.

This symbol next to a keyword in the IntelliSense
list indicates that you’re looking at a method.

This method has two parameters: Source is required;
PlotBy is optional (it’s listed in square brackets).

If we don’t pass a reference to a range of cells into the Source parameter, the SetSourceData method won’t work.

Named parameters make
your code more readable.

Chapter 2 - Object Oriented Pogramming

© Copyright 2024 Page 20

Returning Values and References from Methods

Some methods return either a value or a reference to an object. You can usually tell if a method
has a return type by reading the tooltip.

To make use of the value or reference returned by a method you could choose to store it
somewhere. A sensible place to do this is a variable of the appropriate type.

Rather than storing the reference to an object that a method returns, you can make use of it by
applying further methods or properties to it instead.

When to use Parentheses

The tooltip for a method always shows parentheses (round brackets) around the parameter list but
you don’t always use them in your code. The diagram below attempts to explain when you should!

The Add method of the Workbooks object returns a
reference to the workbook that has been created.

The AutoComplete method of a Range object returns
a string representing the first matching item in the list of
autocomplete entries.

The Find method returns a reference to the
first Range object in which the value you’re
looking for was found.

We’re storing the result of the Find method in
an object variable called FilmCell.

We can test the contents of the variable later
in the procedure to determine what to do next.

The Charts.Add method returns a reference to a chart,
so we can apply any chart method or property to it.

When you’re simply applying a method to
perform an action, as here, you don’t use
parentheses around your argument list.

In this example we’re returning the result of
the Add method and storing it in a variable.
Because we’re returning a result from the
method we need to use parentheses.

You also need to use parentheses when
you apply another method or property to
the result of the method, as we have here.

Chapter 2 - Object Oriented Pogramming

© Copyright 2024 Page 21

2.5 Properties

A Property is an attribute of an object that you can look at and, in some cases, change to another
value. You can spot properties in the IntelliSense list with their “pointy finger” icon.

Writing to a Property

Changing the value of a property is called writing to it. You do this by assigning a value to the
property using the = operator. You can see some examples in the table below:

Property What it does
Range(“A1”).Value = 123 Changes the information stored in the cell.

ActiveSheet.Name = “Backup” Changes the name of the current sheet.

Rows(3).Hidden = True Hides row 3 of the currently active worksheet.

Columns(“C”).ColumnWidth = 15 Changes the width of column C on the active sheet.

ActiveDocument.Paragraphs(1).Alignment = _
 wdAlignParagraphCenter

Centre-aligns the text of the first paragraph in the
active document.

Presentations(1).Slides(1).Shapes(1).Width = 50 Changes the width of a shape on a slide.

Read-Only Properties

Some properties are read-only, meaning you can’t assign a value to them. You can’t spot read-
only properties in the IntelliSense list, but you’ll see an error if you try to assign a value to one.

Property Data Types

You should take care to assign the correct type of data to a property. In the example below, the
ColumnWidth property can only accept a number but we’re attempting to assign a string to it:

This symbol next to a keyword in the IntelliSense
list indicates that you’re looking at a property.

You can’t change the name of a workbook using
the Name property, as this message so politely
informs you.

The exact error message that you’ll see will depend
on which property you’ve tried to change. This one
is fairly descriptive.

Chapter 2 - Object Oriented Pogramming

© Copyright 2024 Page 22

Reading from a Property

You read from a property when you look at its value. Reading a property returns either a value or
a reference to an object, which you can store or make use of in some other way.

Properties and Parameters

Just as with methods, many properties have a list of parameters. You can use the tooltips to find
out if a property has any parameters.

You can pass arguments to the parameters of a property in the same way as for a method. The
rules on whether to use parentheses are also the same.

This line reads the Value property of a cell
into a variable, storing it for later use.

Offset is a property of a cell which returns a
reference to a Range object.

Here we apply the Select method to the cell
returned by the Offset property.

The End property of a range has a single parameter
called Direction, which is non-optional.

The Address property of a cell has five parameters but they’re all optional (each one is shown in square brackets).

We’re applying the Select method to the range
returned by the End property so we need to
use parentheses to enclose the argument list.

Here we’re naming two parameters of the Address property and returning its result to a string variable.

Chapter 2 - Object Oriented Pogramming

© Copyright 2024 Page 23

2.6 Getting Help in VBA

You have several choices for getting help when writing your VBA code.

The Object Browser

The Object Browser is VBA’s built-in dictionary which contains definitions for each VBA keyword.
To display it, choose View | Object Browser from the menu, or press on the keyboard.

In Office 2013 Microsoft, ironically unhelpfully, moved the VBA help files to an online system. You
can still find local copies of the help files with a web search for “VBA offline help”.

F2

Use this list to choose which library you want to look in. The
option shown here will give you the biggest choice of words.

You can search for a keyword by typing it here and clicking
the binoculars button. The results appear in a new panel
just below the search box.

Rather than searching, it’s often easier to look up keywords
alphabetically, just like in a dictionary! Start by selecting the
class of object you’re interested in from the list on the left.

When you’ve chosen a class, use the list on the right to find
and select the property or method you want help on.

You’ll see the syntax of the keyword at the bottom
of the screen. For further help, click the question
mark icon or right-click the item and choose Help.

If you choose to view help on a keyword you’ll be
taken to a page resembling this one in your default
web browser.

The page is part of Microsoft’s Developer Network
(MSDN) site and provides details on the keyword
you’ve chosen to get help on.

Use this page to download the local
copies of the VBA help files.

Sadly, the offline help files don’t integrate with the VBE. Instead, you must
browse the documentation in a separate, slightly ugly application.

Chapter 2 - Object Oriented Pogramming

© Copyright 2024 Page 24

Context Sensitive Help

Rather than navigating through the Object Browser, you can quickly get help on a specific keyword
by clicking on it in your code and pressing on the keyboard.

Recording a Macro

When you record a macro, the VBE automatically writes out the VBA instructions for the actions
that you perform. To record a macro, choose Developer | Record Macro from the Excel ribbon.

When you’ve finished performing actions, you can stop recording by choosing Developer | Stop
Recording from the Excel ribbon. Now you just have to find the code you’ve recorded.

F1

Position the flashing text cursor somewhere on
the keyword you help with and press .

You should be taken to the relevant online help
page, although this isn’t always successful!

You can give the macro a different name to its default
one, but as we’re only using this code to get help it’s
not really worth doing.

There’s not much point in assigning a shortcut key to
run the macro later either.

Storing the macro in this workbook will automatically
create a new module for the recorded code.

Click when you want to start recording. Then you
just have to perform the actions that you want Excel to
write the code for.

You should find a new module
in the project you recorded the
macro in.

Double-click the module to see
the code in it. You should find
a macro which contains code
for each action you performed
while recording.

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

What we do!

Basic

training
Advanced
training

Systems /
consultancy

O
ff

ic
e

 Microsoft Excel

 VBA macros

 Office Scripts

 Microsoft Access

P
o
w

er
 B

I,
 e

tc
 Power BI and DAX

 Power Apps

 Power Automate (both)

S
Q

L
 S

e
r
v
e
r

 SQL

 Reporting Services

 Report Builder

 Integration Services

 Analysis Services

C
o

d
in

g
 a

n
d

 A
I
 Visual C#

 VB programming

 AI tools

 Python

mailto:sales@wiseowl.co.uk

www.wiseowl.co.uk | (0161) 883 3606 | sales@wiseowl.co.uk

mailto:sales@wiseowl.co.uk

